The spinning solar sail of large scale has been well developed in recent years. Such a solar sail can be considered as a rigid-flexible multibody system mainly composed of a spinning central rigid hub, a number of fle...The spinning solar sail of large scale has been well developed in recent years. Such a solar sail can be considered as a rigid-flexible multibody system mainly composed of a spinning central rigid hub, a number of flexible thin tethers, sail membranes, and tip masses. A simplified interplanetary kite-craft accelerated by radiation of the Sun (IKAROS) model is established in this study by using the absolute-coordinate-based (ACB) method that combines the natural coordinate formulation (NCF) describing the central rigid hub and the absolute nodal coordinate formulation (ANCF) describing flexible parts. The initial configuration of the system in the second-stage deployment is determined through both dynamic and static analyses. The huge set of stiff equations of system dynamics is solved by using the generalized-alpha method, and thus the deployment dynamics of the system can be well understood.展开更多
基金supported by the National Natural Science Foundation of China (11221202 and 51075032)Excellent Young Scholar Research Fund from Beijing Institute of Technology
文摘The spinning solar sail of large scale has been well developed in recent years. Such a solar sail can be considered as a rigid-flexible multibody system mainly composed of a spinning central rigid hub, a number of flexible thin tethers, sail membranes, and tip masses. A simplified interplanetary kite-craft accelerated by radiation of the Sun (IKAROS) model is established in this study by using the absolute-coordinate-based (ACB) method that combines the natural coordinate formulation (NCF) describing the central rigid hub and the absolute nodal coordinate formulation (ANCF) describing flexible parts. The initial configuration of the system in the second-stage deployment is determined through both dynamic and static analyses. The huge set of stiff equations of system dynamics is solved by using the generalized-alpha method, and thus the deployment dynamics of the system can be well understood.