A hybrid approach is presented to investigate the dynamic behavior of anaxially slide-spin flexible rocket with nonlinear clearance. The equations of motion of the flexiblerocket are derived based upon Euler-Bernoulli...A hybrid approach is presented to investigate the dynamic behavior of anaxially slide-spin flexible rocket with nonlinear clearance. The equations of motion of the flexiblerocket are derived based upon Euler-Bernoulli beam theory and Hamilton principle and the finiteelement method. The characteristics of clearance between the spinning rocket and launcher areconsidered to be piecewise linear. Numerical solution is developed by direct integration method anddemonstrates the validity of the method. The coupled dynamic behavior of axial motion and transversevibrations of rocket are analyzed, and the influences of axially moving acceleration, spin speed,linking stiffness of elastic 'shoes', and the nonlinearity of clearance on the motion attitude ofrocket are studied.展开更多
In this paper,a robust adaptive controller is designed for a guided spinning rocket,whose dynamics presents the characteristics of pitch-yaw cross coupling,fast time-varying aerodynamics parameters and wide flight env...In this paper,a robust adaptive controller is designed for a guided spinning rocket,whose dynamics presents the characteristics of pitch-yaw cross coupling,fast time-varying aerodynamics parameters and wide flight envelop.First,a coupled nonlinear six-degree-of-freedom equation of motion for a guided spinning rocket is developed,and the lateral acceleration motion is modeled as a control plant with time-varying matched uncertainties and unmodeled dynamics.Then,a robust adaptive control method is proposed by combining Bregman divergence and variational method to achieve fast adaption and maintain bounded tracking.The stability of the resulting closed-loop system is proved,and the ultimate bound and convergence rate are also analyzed.Finally,numerical simulations are performed for a single operating point and the whole flight trajectory to show the robustness and adaptability of the proposed method with respect to timevarying uncertainties and unmodeled dynamics.展开更多
The variation of mass, and moment of inertia of a spin-stabilized spacecraft leads to concern about the nutation instability. Here a careful analysis on the nutation instability is performed on a spacecraft propelled ...The variation of mass, and moment of inertia of a spin-stabilized spacecraft leads to concern about the nutation instability. Here a careful analysis on the nutation instability is performed on a spacecraft propelled by solid rocket booster(SRB). The influences of specific solid propellant designs on transversal angular velocity are discussed. The results show that the typical SRB of End Burn suppresses the non-principal axial angular velocity. On the contrary, the frequently used SRB of Radial Burn could amplify the transversal angular velocity. The nutation instability caused by a design of Radial Burn could be remedied by the addition of End Burn at the same time based on the study of the combination design of both End Burn and Radial Burn.The analysis of the results proposes the design conception of how to control the nutation motion.The method is suitable to resolve the nutation instability of solid rocket motor with complex propellant patterns.展开更多
基金This project is supported by Science Foundation of Shanghai Municipal Co-mmission of Education, China(No.98AJ01) Provincial Natural Science Foundation of Shanghai, China(No.03ZR14032).
文摘A hybrid approach is presented to investigate the dynamic behavior of anaxially slide-spin flexible rocket with nonlinear clearance. The equations of motion of the flexiblerocket are derived based upon Euler-Bernoulli beam theory and Hamilton principle and the finiteelement method. The characteristics of clearance between the spinning rocket and launcher areconsidered to be piecewise linear. Numerical solution is developed by direct integration method anddemonstrates the validity of the method. The coupled dynamic behavior of axial motion and transversevibrations of rocket are analyzed, and the influences of axially moving acceleration, spin speed,linking stiffness of elastic 'shoes', and the nonlinearity of clearance on the motion attitude ofrocket are studied.
基金supported by the National Natural Science Foundation of China (No. 11532002)。
文摘In this paper,a robust adaptive controller is designed for a guided spinning rocket,whose dynamics presents the characteristics of pitch-yaw cross coupling,fast time-varying aerodynamics parameters and wide flight envelop.First,a coupled nonlinear six-degree-of-freedom equation of motion for a guided spinning rocket is developed,and the lateral acceleration motion is modeled as a control plant with time-varying matched uncertainties and unmodeled dynamics.Then,a robust adaptive control method is proposed by combining Bregman divergence and variational method to achieve fast adaption and maintain bounded tracking.The stability of the resulting closed-loop system is proved,and the ultimate bound and convergence rate are also analyzed.Finally,numerical simulations are performed for a single operating point and the whole flight trajectory to show the robustness and adaptability of the proposed method with respect to timevarying uncertainties and unmodeled dynamics.
基金supported by the National Natural Science Foundation of China (Nos. 11502086 and 11502087)
文摘The variation of mass, and moment of inertia of a spin-stabilized spacecraft leads to concern about the nutation instability. Here a careful analysis on the nutation instability is performed on a spacecraft propelled by solid rocket booster(SRB). The influences of specific solid propellant designs on transversal angular velocity are discussed. The results show that the typical SRB of End Burn suppresses the non-principal axial angular velocity. On the contrary, the frequently used SRB of Radial Burn could amplify the transversal angular velocity. The nutation instability caused by a design of Radial Burn could be remedied by the addition of End Burn at the same time based on the study of the combination design of both End Burn and Radial Burn.The analysis of the results proposes the design conception of how to control the nutation motion.The method is suitable to resolve the nutation instability of solid rocket motor with complex propellant patterns.