In this study, a modified logarithmic spiral method is proposed to determine the passive earth pressure and failure surface of cohesionless sloping backfill, with presence of wallesoil interface friction. The proposed...In this study, a modified logarithmic spiral method is proposed to determine the passive earth pressure and failure surface of cohesionless sloping backfill, with presence of wallesoil interface friction. The proposed method is based on a limit equilibrium analysis wherein the assumed profile of the backfill failure surface is a composite of logarithmic spiral and its tangent. If the wallesoil interface is smooth, a straight line does not need to be assumed for the failure surface. The geometry of the failure surface is determined using the Mohr circle analysis of the soil. The resultant passive earth thrust is computed considering equilibrium of moments. The passive earth pressure coefficients are calculated with varied values of soil internal friction angle and cohesion, wall friction angle and inclination angle, and sloping backfill angle. This method is verified with the finite element method(FEM) by comparing the horizontal passive earth pressure and failure surface. The results agree well with other solutions, particularly with those obtained by the FEM. The implementation of the present method is efficient. The logarithmic spiral theory is rigorous and self-explanatory for the geotechnical engineer.展开更多
The present work dealt with the preconcentration of rare earth elements in Saghand ore(Yazd province,Iran)which was achieved by Humphrey spiral using orthogonal optimization method after scrubbing the sample at 45%sol...The present work dealt with the preconcentration of rare earth elements in Saghand ore(Yazd province,Iran)which was achieved by Humphrey spiral using orthogonal optimization method after scrubbing the sample at 45%solid pulp density for 30 min.The pulp was diluted and was fed to a Humphrey spiral for upgrading.The process parameters considered were feed size,feed solids and feed rate,and Taguchi’s L9(34)orthogonal array(OA)was selected for optimization of the process.The results show that the feed rate and feed size were more significant than the other operation parameters of the process.It was also found that under optimal conditions,the concentrate grade of rare earth elements increased from2860 10 6to 6050 10 6and recovery reached to 58%.展开更多
The domain size of spiral waves is an important issue in studies of two-dimensional (2D) spatiotemporal patterns. In this work, we use the 2D complex Ginzburg-Landau equation (CGLE) as our model and find that an i...The domain size of spiral waves is an important issue in studies of two-dimensional (2D) spatiotemporal patterns. In this work, we use the 2D complex Ginzburg-Landau equation (CGLE) as our model and find that an initially big spiral can successfully transfer to several small spirals by applying a pulse array method. The impacts of several important factors, such as array density, controlling intensity and pulsing time, are investigated. This control approach may be useful for the control of 2D spatiotemporal patterns and has potential applications in the control of some realistic systems, such as meteorological and cardiac systems.展开更多
A method for precise calculation of tooth root stress of spiral bevel gears is presentedand developed. On the basis of the machine settings analysis, tooth geometry anaysis and loadedtooth contact analysis, by using t...A method for precise calculation of tooth root stress of spiral bevel gears is presentedand developed. On the basis of the machine settings analysis, tooth geometry anaysis and loadedtooth contact analysis, by using the tooth surface distribution load from tooth load analysis, thecalculation model is established and the root stress is calculated by means of finite element meth-od. The method mentioned is verified by a tested gears example.展开更多
为研究采煤机螺旋滚筒在多种赋存条件下的振动特性,以MG2×55/250–BWD型薄煤层采煤机为工程对象,优化煤岩接触模型,建立与实际赋存条件相似的多种不同截割工况下煤壁离散元模型。结合DEM–MFBD(Discrete Element Method-Multi Flex...为研究采煤机螺旋滚筒在多种赋存条件下的振动特性,以MG2×55/250–BWD型薄煤层采煤机为工程对象,优化煤岩接触模型,建立与实际赋存条件相似的多种不同截割工况下煤壁离散元模型。结合DEM–MFBD(Discrete Element Method-Multi Flexible Body Dynamics)双向耦合数值模拟方法搭建采煤机截割部刚柔耦合虚拟样机模型与煤壁离散元模型的双向耦合试验平台,通过仿真试验得到不同煤岩工况下螺旋滚筒的截割过程,并分别对其振动特性的变化规律展开分析。研究结果表明:螺旋滚筒在截割过程中,三向均出现不同程度的振动,其中截割阻力方向振动加速度最大,牵引阻力方向振动加速度次之,侧向力方向振动加速度最小。随着模型中夹矸硬度以及层数比例的增加,截割过程中螺旋滚筒的振动强度不断加剧,最大振动加速度有效值的差值达到4403.149 mm/s^(2)。利用短时傅里叶变换将一维振动信号转化为二维时频谱图像,得到不同煤岩工况下振动信息变化特征在时频域中完成较好保留,其时频谱图像的特征样本效果优于各工况的时域一维信号曲线,主频能量位置、范围大小、特征团形状等信息具有明显区别,即使遇到夹矸层数不同,夹矸坚固性系数也存在差异的复杂工况,其时频谱图像中能量特征的分布形式也具有显著差别。通过振动模态分析发现,随着煤壁中含有夹矸硬度的增加,各部位的变形量均发生变化,其中截齿部位变化最为强烈。基于相似理论搭建采煤机振动信号测试试验平台,对不同煤岩工况条件下螺旋滚筒截割过程进行了测试研究,通过追踪螺旋滚筒的振动状态,发现其振动变化规律与双向耦合数值模拟一致。试验测试得到DEM–MFBD数值模拟方法获取的螺旋滚筒振动加速度有效值与依据相似比反推的试验数据之间的误差小于DEM离散元数值模拟方法与实验数据之间的误差,验证了DEM–MFBD数值模拟方法的准确性。研究结果对于提升螺旋滚筒工作可靠性具有重要意义,同时也为采煤机智能化开采的煤岩截割状态识别系统搭建过程中数据信息的获取提供了一种新的方法。展开更多
利用国家认可的实验室风量检测台,对螺旋风管基本系列17种规格样品的沿程阻力进行了测试,得到了不同风速下不同规格螺旋风管的沿程阻力实测值。参照ANSI/ASHRAE Standard 120-2008,采用最小二乘法对实测值进行拟合,得到了17个螺旋风管...利用国家认可的实验室风量检测台,对螺旋风管基本系列17种规格样品的沿程阻力进行了测试,得到了不同风速下不同规格螺旋风管的沿程阻力实测值。参照ANSI/ASHRAE Standard 120-2008,采用最小二乘法对实测值进行拟合,得到了17个螺旋风管沿程阻力算式。使用数理统计方法分析得出了这些算式的相关关系,对各算式数值优化整理后采用最小二乘法再次拟合,最终将17个算式拟合为1个可适用于全系列规格螺旋风管沿程阻力计算的通用算式。计算结果表明,采用拟合通用算式计算得到的螺旋风管沿程阻力值与实测值相比平均误差小于3%,精度满足设计计算要求。展开更多
基金funded by the Doctoral Scientific Research Foundation of Liaoning Province(Grant No.20170520341)the Fundamental Research Funds for the Central Universities(Grant No.N170103015)
文摘In this study, a modified logarithmic spiral method is proposed to determine the passive earth pressure and failure surface of cohesionless sloping backfill, with presence of wallesoil interface friction. The proposed method is based on a limit equilibrium analysis wherein the assumed profile of the backfill failure surface is a composite of logarithmic spiral and its tangent. If the wallesoil interface is smooth, a straight line does not need to be assumed for the failure surface. The geometry of the failure surface is determined using the Mohr circle analysis of the soil. The resultant passive earth thrust is computed considering equilibrium of moments. The passive earth pressure coefficients are calculated with varied values of soil internal friction angle and cohesion, wall friction angle and inclination angle, and sloping backfill angle. This method is verified with the finite element method(FEM) by comparing the horizontal passive earth pressure and failure surface. The results agree well with other solutions, particularly with those obtained by the FEM. The implementation of the present method is efficient. The logarithmic spiral theory is rigorous and self-explanatory for the geotechnical engineer.
基金the deputy director of Research and Development in Atomic Energy of Iran for financial support as well as Nuclear Science and Technology Research Institute for technical support
文摘The present work dealt with the preconcentration of rare earth elements in Saghand ore(Yazd province,Iran)which was achieved by Humphrey spiral using orthogonal optimization method after scrubbing the sample at 45%solid pulp density for 30 min.The pulp was diluted and was fed to a Humphrey spiral for upgrading.The process parameters considered were feed size,feed solids and feed rate,and Taguchi’s L9(34)orthogonal array(OA)was selected for optimization of the process.The results show that the feed rate and feed size were more significant than the other operation parameters of the process.It was also found that under optimal conditions,the concentrate grade of rare earth elements increased from2860 10 6to 6050 10 6and recovery reached to 58%.
文摘The domain size of spiral waves is an important issue in studies of two-dimensional (2D) spatiotemporal patterns. In this work, we use the 2D complex Ginzburg-Landau equation (CGLE) as our model and find that an initially big spiral can successfully transfer to several small spirals by applying a pulse array method. The impacts of several important factors, such as array density, controlling intensity and pulsing time, are investigated. This control approach may be useful for the control of 2D spatiotemporal patterns and has potential applications in the control of some realistic systems, such as meteorological and cardiac systems.
文摘A method for precise calculation of tooth root stress of spiral bevel gears is presentedand developed. On the basis of the machine settings analysis, tooth geometry anaysis and loadedtooth contact analysis, by using the tooth surface distribution load from tooth load analysis, thecalculation model is established and the root stress is calculated by means of finite element meth-od. The method mentioned is verified by a tested gears example.
文摘为研究采煤机螺旋滚筒在多种赋存条件下的振动特性,以MG2×55/250–BWD型薄煤层采煤机为工程对象,优化煤岩接触模型,建立与实际赋存条件相似的多种不同截割工况下煤壁离散元模型。结合DEM–MFBD(Discrete Element Method-Multi Flexible Body Dynamics)双向耦合数值模拟方法搭建采煤机截割部刚柔耦合虚拟样机模型与煤壁离散元模型的双向耦合试验平台,通过仿真试验得到不同煤岩工况下螺旋滚筒的截割过程,并分别对其振动特性的变化规律展开分析。研究结果表明:螺旋滚筒在截割过程中,三向均出现不同程度的振动,其中截割阻力方向振动加速度最大,牵引阻力方向振动加速度次之,侧向力方向振动加速度最小。随着模型中夹矸硬度以及层数比例的增加,截割过程中螺旋滚筒的振动强度不断加剧,最大振动加速度有效值的差值达到4403.149 mm/s^(2)。利用短时傅里叶变换将一维振动信号转化为二维时频谱图像,得到不同煤岩工况下振动信息变化特征在时频域中完成较好保留,其时频谱图像的特征样本效果优于各工况的时域一维信号曲线,主频能量位置、范围大小、特征团形状等信息具有明显区别,即使遇到夹矸层数不同,夹矸坚固性系数也存在差异的复杂工况,其时频谱图像中能量特征的分布形式也具有显著差别。通过振动模态分析发现,随着煤壁中含有夹矸硬度的增加,各部位的变形量均发生变化,其中截齿部位变化最为强烈。基于相似理论搭建采煤机振动信号测试试验平台,对不同煤岩工况条件下螺旋滚筒截割过程进行了测试研究,通过追踪螺旋滚筒的振动状态,发现其振动变化规律与双向耦合数值模拟一致。试验测试得到DEM–MFBD数值模拟方法获取的螺旋滚筒振动加速度有效值与依据相似比反推的试验数据之间的误差小于DEM离散元数值模拟方法与实验数据之间的误差,验证了DEM–MFBD数值模拟方法的准确性。研究结果对于提升螺旋滚筒工作可靠性具有重要意义,同时也为采煤机智能化开采的煤岩截割状态识别系统搭建过程中数据信息的获取提供了一种新的方法。
文摘利用国家认可的实验室风量检测台,对螺旋风管基本系列17种规格样品的沿程阻力进行了测试,得到了不同风速下不同规格螺旋风管的沿程阻力实测值。参照ANSI/ASHRAE Standard 120-2008,采用最小二乘法对实测值进行拟合,得到了17个螺旋风管沿程阻力算式。使用数理统计方法分析得出了这些算式的相关关系,对各算式数值优化整理后采用最小二乘法再次拟合,最终将17个算式拟合为1个可适用于全系列规格螺旋风管沿程阻力计算的通用算式。计算结果表明,采用拟合通用算式计算得到的螺旋风管沿程阻力值与实测值相比平均误差小于3%,精度满足设计计算要求。