Numerical simulation concerning the forming and welding process of spiral welded pipe was conducted, which included three steps : the first step was the stress analysis when the spiral was formed, and then the stress...Numerical simulation concerning the forming and welding process of spiral welded pipe was conducted, which included three steps : the first step was the stress analysis when the spiral was formed, and then the stress was regarded as initial condition of melding during the temperature field analysis in the process of welding, the last step was the thermal stress analysis of the weld seam after the welding was over. Moreover, when the steel strip was pushed, the stress was also calculated by non-linearity contact technology using Abaqus Software. By finite element modeling and calculating of the forming and welding process of the spiral welded pipe, the key points of the multi-fields synthetic simulating were studied and discussed.展开更多
Steel pipes are categorized into seamless pipes and welded pipes,and particularly the welded pipes’ NDT(Non-Destructive Testing)has been a challenging problem.In the case,on the basis of the presentation of welded pi...Steel pipes are categorized into seamless pipes and welded pipes,and particularly the welded pipes’ NDT(Non-Destructive Testing)has been a challenging problem.In the case,on the basis of the presentation of welded pipes,the analysis of its relevant testing key is carried out.Afterwards,the MFL(Magnetic Flux Leakage)methods for longitudinally welded line-pipes and for helically welded pipes are respectively proposed.Meanwhile,their relevant experiments are conducted,and finally the two technologies for the two types of welded pipes are verified well.展开更多
This study developed a sequential coupling finite element procedure to predict residual stresses of steel pipes with longitudinal wela/ circumferential weld and spiral weld.The results show that the residual stress i...This study developed a sequential coupling finite element procedure to predict residual stresses of steel pipes with longitudinal wela/ circumferential weld and spiral weld.The results show that the residual stress in heat affected zone(HAZ)is higher than that in weld for spiral weld pipe.For the circumferential weld pipe and spiral weld pipe,the residual stress in inner surface is higher than that in outer surface.However,for the spiral weld pipe,the residual stress in inner surface is smaller than that in outer surface.The hoop residual stress of circumferential weld pipe is higher than that of longitudinal weld pipe,while the axial residual stress of circumferential weld pipe is smaller than that of longitudinal weld pipe.The hoop stresses for circumferential weld pipe and axial stress for longitudinal weld pipe have exceeded the yield strength of base metal.With the increase of helix angle,the hoop stress decreases while the axial stress increases.For the spiral pipe(α=30° to 50°),both the hoop stress and axial stress are relatively small.The spiral pipe(helix angle ranging from 30° to 50°) is helpful to reduce stress corrosion cracking(SCC) and it is recommended to manufacture the steel pipe.展开更多
基金Funded by Scientific Research Key Program of Beijing Municipal Commission of Education(KZ200610017010)Beijing Elitist Program Project(20041D0500517).
文摘Numerical simulation concerning the forming and welding process of spiral welded pipe was conducted, which included three steps : the first step was the stress analysis when the spiral was formed, and then the stress was regarded as initial condition of melding during the temperature field analysis in the process of welding, the last step was the thermal stress analysis of the weld seam after the welding was over. Moreover, when the steel strip was pushed, the stress was also calculated by non-linearity contact technology using Abaqus Software. By finite element modeling and calculating of the forming and welding process of the spiral welded pipe, the key points of the multi-fields synthetic simulating were studied and discussed.
文摘Steel pipes are categorized into seamless pipes and welded pipes,and particularly the welded pipes’ NDT(Non-Destructive Testing)has been a challenging problem.In the case,on the basis of the presentation of welded pipes,the analysis of its relevant testing key is carried out.Afterwards,the MFL(Magnetic Flux Leakage)methods for longitudinally welded line-pipes and for helically welded pipes are respectively proposed.Meanwhile,their relevant experiments are conducted,and finally the two technologies for the two types of welded pipes are verified well.
基金supported by the Taishan Scholar Construction Funding(ts201511018)the National Natural Science Foundation of China(11372359)+2 种基金the Natural Science Foundation for Distinguished Young Scholars of Shandong Province(JQ201417)the Fundamental Research Funds for the Central Universities(15Cx08006A)the Innovation Project Foundation for Graduate Student of China University of Petroleum(YCXJ2016029)
文摘This study developed a sequential coupling finite element procedure to predict residual stresses of steel pipes with longitudinal wela/ circumferential weld and spiral weld.The results show that the residual stress in heat affected zone(HAZ)is higher than that in weld for spiral weld pipe.For the circumferential weld pipe and spiral weld pipe,the residual stress in inner surface is higher than that in outer surface.However,for the spiral weld pipe,the residual stress in inner surface is smaller than that in outer surface.The hoop residual stress of circumferential weld pipe is higher than that of longitudinal weld pipe,while the axial residual stress of circumferential weld pipe is smaller than that of longitudinal weld pipe.The hoop stresses for circumferential weld pipe and axial stress for longitudinal weld pipe have exceeded the yield strength of base metal.With the increase of helix angle,the hoop stress decreases while the axial stress increases.For the spiral pipe(α=30° to 50°),both the hoop stress and axial stress are relatively small.The spiral pipe(helix angle ranging from 30° to 50°) is helpful to reduce stress corrosion cracking(SCC) and it is recommended to manufacture the steel pipe.