期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Multi-scale UDCT dictionary learning based highly undersampled MR image reconstruction using patch-based constraint splitting augmented Lagrangian shrinkage algorithm 被引量:2
1
作者 Min YUAN Bing-xin YANG +3 位作者 Yi-de MA Jiu-wen ZHANG Fu-xiang LU Tong-feng ZHANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第12期1069-1087,共19页
Recently, dictionary learning(DL) based methods have been introduced to compressed sensing magnetic resonance imaging(CS-MRI), which outperforms pre-defined analytic sparse priors. However, single-scale trained dictio... Recently, dictionary learning(DL) based methods have been introduced to compressed sensing magnetic resonance imaging(CS-MRI), which outperforms pre-defined analytic sparse priors. However, single-scale trained dictionary directly from image patches is incapable of representing image features from multi-scale, multi-directional perspective, which influences the reconstruction performance. In this paper, incorporating the superior multi-scale properties of uniform discrete curvelet transform(UDCT) with the data matching adaptability of trained dictionaries, we propose a flexible sparsity framework to allow sparser representation and prominent hierarchical essential features capture for magnetic resonance(MR) images. Multi-scale decomposition is implemented by using UDCT due to its prominent properties of lower redundancy ratio, hierarchical data structure, and ease of implementation. Each sub-dictionary of different sub-bands is trained independently to form the multi-scale dictionaries. Corresponding to this brand-new sparsity model, we modify the constraint splitting augmented Lagrangian shrinkage algorithm(C-SALSA) as patch-based C-SALSA(PB C-SALSA) to solve the constraint optimization problem of regularized image reconstruction. Experimental results demonstrate that the trained sub-dictionaries at different scales, enforcing sparsity at multiple scales, can then be efficiently used for MRI reconstruction to obtain satisfactory results with further reduced undersampling rate. Multi-scale UDCT dictionaries potentially outperform both single-scale trained dictionaries and multi-scale analytic transforms. Our proposed sparsity model achieves sparser representation for reconstructed data, which results in fast convergence of reconstruction exploiting PB C-SALSA. Simulation results demonstrate that the proposed method outperforms conventional CS-MRI methods in maintaining intrinsic properties, eliminating aliasing, reducing unexpected artifacts, and removing noise. It can achieve comparable performance of reconstruction with the state-of-the-art methods even under substantially high undersampling factors. 展开更多
关键词 Compressed sensing(CS) Magnetic resonance imaging(MRI) Uniform discrete curvelet transform(UDCT) Multi-scale dictionary learning(MSDL) Patch-based constraint splitting augmented lagrangian shrinkage algorithm(PB C-salsa)
原文传递
分裂增广拉格朗日收缩反卷积声源识别算法 被引量:5
2
作者 樊小鹏 张鑫 +1 位作者 褚志刚 李丽 《振动与冲击》 EI CSCD 北大核心 2020年第23期141-147,共7页
提出了一种新颖高效的、超高分辨率的反卷积声源识别方法,即分裂增广拉格朗日收缩(SALSA)反卷积声源识别算法。该方法利用主要声源通常具有的稀疏特性和求解大规模稀疏恢复问题的交替方向思想,在波束形成反卷积数学模型中引入一个和源... 提出了一种新颖高效的、超高分辨率的反卷积声源识别方法,即分裂增广拉格朗日收缩(SALSA)反卷积声源识别算法。该方法利用主要声源通常具有的稀疏特性和求解大规模稀疏恢复问题的交替方向思想,在波束形成反卷积数学模型中引入一个和源强等价的分裂变量,进而建立了增广拉格朗日变量分裂声源识别数学模型,并采用SALSA来交替迭代求解该分裂模型获得声源强度。仿真和试验结果表明,该方法与经典的反卷积声源成像方法(DAMAS)相比,源强量化能力相当,还拥有更优的收敛性,在整个分析频率范围内都拥有超高的分辨率,迭代计算速度快数十倍。 展开更多
关键词 声源识别 稀疏约束反卷积 分裂增广拉格朗日收缩(salsa)
下载PDF
基于压缩感知的电力系统故障选线研究 被引量:7
3
作者 唐华 张明磊 杨超 《测控技术》 CSCD 2018年第6期72-75,80,共5页
为了解决电力系统故障选线中信号的采样、传输和存储问题,提出了一种全新的基于压缩感知理论的信号压缩的方法。该方法的采样频率不用考虑奈奎斯特采样频率。采样的信号是有选择性的部分信号。并通过设计重构算法来准确恢复该全部信号... 为了解决电力系统故障选线中信号的采样、传输和存储问题,提出了一种全新的基于压缩感知理论的信号压缩的方法。该方法的采样频率不用考虑奈奎斯特采样频率。采样的信号是有选择性的部分信号。并通过设计重构算法来准确恢复该全部信号。考虑到一般条件下信号稀疏度不确定性,采用一种分割增广拉格朗日收缩算法(SALSA)来重构这些稀疏度不确定的信号。通过采用快速傅里叶变换基与高斯随机矩阵并且和SALSA相结合能够很好地实现信号压缩重构。对重构信号采用小波分解,获取重构信号的主要特征,分析零序电流模极大值的极性,找出其中一条与另外两条零序电流模极大值极性不同的线路,从而确定此线路为故障线路。 展开更多
关键词 故障选线 压缩感知 高斯随机矩阵 分割增广拉格朗日收缩算法(salsa) 小波分解
下载PDF
分裂增广拉格朗日收缩法移除SAR影像相干斑
4
作者 陈亚欣 卜丽静 +1 位作者 张正鹏 武文波 《遥感信息》 CSCD 北大核心 2018年第2期78-83,共6页
针对SAR影像相干斑移除过程中影像纹理细节容易丢失的问题以及非凸保真项求解困难的问题,提出一种用分裂增广拉格朗日收缩法移除SAR影像相干斑的算法。首先,在分析SAR影像成像机理和统计特性的基础上,利用最大后验估计和总变分TV项,建立... 针对SAR影像相干斑移除过程中影像纹理细节容易丢失的问题以及非凸保真项求解困难的问题,提出一种用分裂增广拉格朗日收缩法移除SAR影像相干斑的算法。首先,在分析SAR影像成像机理和统计特性的基础上,利用最大后验估计和总变分TV项,建立SAR图像相干斑移除问题的数学模型;然后,利用分裂增广拉格朗日收缩法,将模型转换为易于求解的双参数最优化的形式并用交替迭代法分解成2个子优化模型;最后,利用牛顿迭代法求解第1个子优化模型,利用对偶方法求解第2个子优化模型。利用武汉某地区高分三号影像验证了该算法的有效性。 展开更多
关键词 SAR相干斑移除 分裂增广拉格朗日收缩法 总变分 牛顿迭代法 对偶方法
下载PDF
Oscillatory-Plus-Transient Signal Decomposition Using TQWT and MCA
5
作者 G. Ravi Shankar Reddy Rameshwar Rao 《Journal of Electronic Science and Technology》 CAS CSCD 2019年第2期135-151,共17页
This paper describes a method for decomposing a signal into the sum of an oscillatory component and a transient component. The process uses the tunable Q-factor wavelet transform (TQWT): The oscillatory component is m... This paper describes a method for decomposing a signal into the sum of an oscillatory component and a transient component. The process uses the tunable Q-factor wavelet transform (TQWT): The oscillatory component is modeled as a signal that can be sparsely denoted by high Q-factor TQWT;similarly, the transient component is modeled as a piecewise smooth signal that can be sparsely denoted using low Q-factor TQWT. Since the low and high Q-factor TQWT has low coherence, the morphological component analysis (MCA) can effectively decompose the signal into oscillatory and transient components. The corresponding optimization problem of MCA is resolved by the split augmented Lagrangian shrinkage algorithm (SALSA). The applications of the proposed method to speech, electroencephalo-graph (EEG), and electrocardiograph (ECG) signals are included. 展开更多
关键词 Morphological COMPONENT analysis (MCA) OSCILLATORY COMPONENT split augmented lagrangian shrinkage algorithm (salsa) transient COMPONENT tunable Q-factor wavelet transform (TQWT)
下载PDF
Study on the Splitting Methods for Separable Convex Optimization in a Unified Algorithmic Framework
6
作者 Bingsheng He 《Analysis in Theory and Applications》 CSCD 2020年第3期262-282,共21页
It is well recognized the convenience of converting the linearly constrained convex optimization problems to a monotone variational inequality.Recently,we have proposed a unified algorithmic framework which can guide ... It is well recognized the convenience of converting the linearly constrained convex optimization problems to a monotone variational inequality.Recently,we have proposed a unified algorithmic framework which can guide us to construct the solution methods for solving these monotone variational inequalities.In this work,we revisit two full Jacobian decomposition of the augmented Lagrangian methods for separable convex programming which we have studied a few years ago.In particular,exploiting this framework,we are able to give a very clear and elementary proof of the convergence of these solution methods. 展开更多
关键词 Convex programming augmented lagrangian method multi-block separable model Jacobian splitting unified algorithmic framework.
原文传递
一种快速的SAR影像相干斑抑制算法
7
作者 张正鹏 陈亚欣 卜丽静 《中国矿业大学学报》 EI CAS CSCD 北大核心 2019年第3期662-667,共6页
提出了一种快速合成孔径雷达(SAR)影像相干斑抑制算法.首先,利用分裂增广拉格朗日收缩法,将总变分正则化去噪模型转换为双参模型.引入交替迭代法将双参模型分解为含非二次保真项和含不可微正则项的两个单参模型.其次,采用牛顿迭代法求... 提出了一种快速合成孔径雷达(SAR)影像相干斑抑制算法.首先,利用分裂增广拉格朗日收缩法,将总变分正则化去噪模型转换为双参模型.引入交替迭代法将双参模型分解为含非二次保真项和含不可微正则项的两个单参模型.其次,采用牛顿迭代法求解含非二次保真项模型,对偶方法求解含不可微正则项模型.最后,采用快速迭代阈值收缩法(FISTA)优化对偶方法的求解速度.实验选择武汉某地区"高分3号"影像和TerraSAR-X影像.结果表明:提出算法能较好的抑制SAR影像相干斑,比总变分正则化方法提升了约两倍的效率. 展开更多
关键词 SAR相干斑抑制 分裂增广拉格朗日收缩法 对偶方法 快速迭代阈值收缩法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部