Our contribution in this paper is to propose an iterative algorithm which does not reqmre prior knowledge of operator norm and prove strong convergence theorem for approximating a solution of split common fixed point ...Our contribution in this paper is to propose an iterative algorithm which does not reqmre prior knowledge of operator norm and prove strong convergence theorem for approximating a solution of split common fixed point problem of demicontractive mappings in a real Hilbert space. So many authors have used algorithms involving the operator norm for solving split common fixed point problem, but as widely known the computation of these Mgorithms may be difficult and for this reason, authors have recently started constructing iterative algorithms with a way of selecting the step-sizes such that the implementation of the algorithm does not require the calculation or estimation of the operator norm. We introduce a new algorithm for solving the split common fixed point problem for demicontractive mappings with a way of selecting the step-sizes such that the implementation of the Mgorithm does not require the calculation or estimation of the operator norm and then prove strong convergence of the sequence in real Hilbert spaces. Finally, we give some applications of our result and numerical example at the end of the paper.展开更多
Let H;, H;, H;be real Hilbert spaces, let A : H;→ H;, B : H;→ H;be two bounded linear operators. The split equality common fixed point problem(SECFP) in the infinite-dimensional Hilbert spaces introduced by Moudaf...Let H;, H;, H;be real Hilbert spaces, let A : H;→ H;, B : H;→ H;be two bounded linear operators. The split equality common fixed point problem(SECFP) in the infinite-dimensional Hilbert spaces introduced by Moudafi(Alternating CQ-algorithm for convex feasibility and split fixed-point problems. Journal of Nonlinear and Convex Analysis)is to find x ∈ F(U), y ∈ F(T) such that Ax = By,(1)where U : H;→ H;and T : H;→ H;are two nonlinear operators with nonempty fixed point sets F(U) = {x ∈ H;: Ux = x} and F(T) = {x ∈ H;: Tx = x}. Note that,by taking B = I and H;= H;in(1), we recover the split fixed point problem originally introduced in Censor and Segal. Recently, Moudafi introduced alternating CQ-algorithms and simultaneous iterative algorithms with weak convergence for the SECFP(1) of firmly quasi-nonexpansive operators. In this paper, we introduce two viscosity iterative algorithms for the SECFP(1) governed by the general class of quasi-nonexpansive operators. We prove the strong convergence of algorithms. Our results improve and extend previously discussed related problems and algorithms.展开更多
基金the Alexander von Humboldt Foundation,Bonn for the fellowship
文摘Our contribution in this paper is to propose an iterative algorithm which does not reqmre prior knowledge of operator norm and prove strong convergence theorem for approximating a solution of split common fixed point problem of demicontractive mappings in a real Hilbert space. So many authors have used algorithms involving the operator norm for solving split common fixed point problem, but as widely known the computation of these Mgorithms may be difficult and for this reason, authors have recently started constructing iterative algorithms with a way of selecting the step-sizes such that the implementation of the algorithm does not require the calculation or estimation of the operator norm. We introduce a new algorithm for solving the split common fixed point problem for demicontractive mappings with a way of selecting the step-sizes such that the implementation of the Mgorithm does not require the calculation or estimation of the operator norm and then prove strong convergence of the sequence in real Hilbert spaces. Finally, we give some applications of our result and numerical example at the end of the paper.
基金supported by National Natural Science Foundation of China(61503385)Fundamental Research Funds for the Central Universities of China(3122016L002)
文摘Let H;, H;, H;be real Hilbert spaces, let A : H;→ H;, B : H;→ H;be two bounded linear operators. The split equality common fixed point problem(SECFP) in the infinite-dimensional Hilbert spaces introduced by Moudafi(Alternating CQ-algorithm for convex feasibility and split fixed-point problems. Journal of Nonlinear and Convex Analysis)is to find x ∈ F(U), y ∈ F(T) such that Ax = By,(1)where U : H;→ H;and T : H;→ H;are two nonlinear operators with nonempty fixed point sets F(U) = {x ∈ H;: Ux = x} and F(T) = {x ∈ H;: Tx = x}. Note that,by taking B = I and H;= H;in(1), we recover the split fixed point problem originally introduced in Censor and Segal. Recently, Moudafi introduced alternating CQ-algorithms and simultaneous iterative algorithms with weak convergence for the SECFP(1) of firmly quasi-nonexpansive operators. In this paper, we introduce two viscosity iterative algorithms for the SECFP(1) governed by the general class of quasi-nonexpansive operators. We prove the strong convergence of algorithms. Our results improve and extend previously discussed related problems and algorithms.