In this paper, the electric and the magnetic dipole couplings between the outer and the inner rings of a single split ring resonator (SRR) are investigated. We numerically demonstrate that the magnetic resonance fre...In this paper, the electric and the magnetic dipole couplings between the outer and the inner rings of a single split ring resonator (SRR) are investigated. We numerically demonstrate that the magnetic resonance frequency can be substantially modified by changing the couplings of the electric and magnetic dipoles, and give a theoretical expression of the magnetic resonance frequency. The results in this work are expected to be conducive to a deeper understanding of the SRR and other similar metamaterials, and provide new guidance for complex metamaterials design with a tailored electromagnetic response.展开更多
The transmission properties of double-ring split ring resonator(SRR) arrays and closed ring resonator arrays are measured using terahertz(THz) time-domain spectroscopy. This technique allows for the simultaneous measu...The transmission properties of double-ring split ring resonator(SRR) arrays and closed ring resonator arrays are measured using terahertz(THz) time-domain spectroscopy. This technique allows for the simultaneous measurement of the amplitude and phase of the transmission coefficient as a function of frequency. The ability to directly measure the phase spectrum is expected to be important in characterizing potential negative index media. In the employed experimental geometry, THz pulses are normally incident on the arrays. Thus, the magnetic field lies in the plane of the arrays and cannot contribute to the magnetic resonance of the SRR. However, it is found that the electric field, when appropriately polarized, can couple to the magnetic resonance. Shifts in the resonance properties with changes in the SRR dimensions and the substrate medium are measured, the results of which are consistent with theory.展开更多
A novel microwave cloak using circular split ring resonator(SRR)based metamaterial structure has been proposed in this paper.The cloak which operates at a frequency of 10.6 GHz is composed of cylindrical dielectric sh...A novel microwave cloak using circular split ring resonator(SRR)based metamaterial structure has been proposed in this paper.The cloak which operates at a frequency of 10.6 GHz is composed of cylindrical dielectric sheets printed with circular split ring resonators of spatially varying and anisotropic material properties.The article also focuses on the phenomenon of resonant splitting in circular SRR microwave cloak.A detailed analysis of various linear metamaterial arrays and their response has also been elucidated.展开更多
A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the convent...A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the conventional double- split ring resonator away from the center, the second resonant frequency for the 0° polarized wave and the resonant frequency for the 90° polarized wave become increasingly close to each other until they are finally identical. Theoretical and experimental results show that the modified double-split ring resonator and the modified triple-split ring resonator are insensitive to different polarized waves and show strong resonant frequency dips near 433 and 444OHz, respectively. The results of this work suggest new opportunities for the investigation and design of polarization-dependent terahertz devices based on split ring resonators.展开更多
Effects of oblique incidence of terahertz waves on the response of planar split-ring resonators are investigated, both experimentally and by simulation. It is found that the incident angle dependent phase delay and co...Effects of oblique incidence of terahertz waves on the response of planar split-ring resonators are investigated, both experimentally and by simulation. It is found that the incident angle dependent phase delay and coupling conditions of neighboring split-ring resonator (SRR) units play important roles and greatly change both the transmission and reflection spectra for the resonant feature of linear charge oscillations. Our results show that the SRR structure-supported magne- toelectric couplings at oblique excitation are trivial and can be ignored. A highly symmetric response is found in the cross-polarization effects, which may manifest the bianisotropic properties of the SRR system but this needs further study.展开更多
In this paper, we present the complex permittivity measurement of low-loss substrates based on a microstrip-line-excited split-ring resonator (SRR). Permittivity of an unknown substrate is calculated based on the chan...In this paper, we present the complex permittivity measurement of low-loss substrates based on a microstrip-line-excited split-ring resonator (SRR). Permittivity of an unknown substrate is calculated based on the change in oscillation frequency of SRR caused by the material-under-test (MUT) above the SRR. Theoretical analysis and results of the simulations and experiments demonstrate the microstrip-line-excited SRR can be used to effectively improve measurement sensitivity. Simple equations for measurement of low-loss substrates using SRR are proposed and experimentally verified.展开更多
To use the single split-ring resonator (SRR) as a basic unit cell for small antenna with multi-band frequency response is proposed. The structure of antenna is consisted of a single spilt-ring resonator and a couple...To use the single split-ring resonator (SRR) as a basic unit cell for small antenna with multi-band frequency response is proposed. The structure of antenna is consisted of a single spilt-ring resonator and a coupled microstrip line. The designed antenna is numerically optimized with CST Microwave Studio. The radiation properties of the antenna show that there are three frequency bands among which two bands are 1.3 GHz and 2.1 GHz ultra-widehand (UWB), respectively, where Sll is less than - 10 dB. The gain at every frequency for the multi-hand antenna is above 2.6 dBi, and it increases monotonously with the frequency in the two UWB.展开更多
Novel band-stop filters with circular split-ring resonators based on the metal-insulator-metal (MIM) structure are presented, with their transmission properties of SPPs propagating through the filter simulated by th...Novel band-stop filters with circular split-ring resonators based on the metal-insulator-metal (MIM) structure are presented, with their transmission properties of SPPs propagating through the filter simulated by the finite-difference time-domain (FDTD) method, The variation of the gap of the split ring can affect the transmission characteristics, i.e., the transmission spectrum of SPPs exhibiting a shift, which is useful for modulating the filter. Linear and nonlinear media are used in the resonator respectively. By varying the refractive index of the linear medium, the transmission properties can be changed obviously, and the effect caused by changing the incident intensity with a nonlinear medium is similar. Several resonant modes that are applicable can be enhanced by changing the position of the gap of the split ring. Thus, the transmission properties can be modulated by adjusting the size of the gap, varying the refractive index, and changing the incident intensity of the input light. These methods may play significant roles in applications of optical integrated circuits and nanostructural devices.展开更多
This paper reports the plasmonic lasing of a split ring filled with gain material in water. The lasing mode(1500 nm)is far from the pump mode(980 nm), which can depress the detection noise from the pump light. The...This paper reports the plasmonic lasing of a split ring filled with gain material in water. The lasing mode(1500 nm)is far from the pump mode(980 nm), which can depress the detection noise from the pump light. The laser intensities of the two modes simultaneously increase by more than 10^3 in amplitude, which can intensify the absorption efficiency of the pumping light and enhance the plasmonic lasing. The plasmonic lasing is a sensitive sensor. When a single protein nanoparticle(n = 1.5, r = 1.25 nm) is trapped in the gap of the split ring, the lasing spectrum moves by 0.031 nm, which is much larger than the detection limit of 10^-5 nm. Moreover, the lasing intensity is also very sensitive to the trapped nanoparticle. It reduces to less than 1/600 when a protein nanoparticle(n = 1.5, r = 1.25 nm) is trapped in the gap.展开更多
An effective approach to expand the bandwidth of negative permeability of small-sized planax materials is proposed. Based on qualitative analysis of equivalent circuit models, the fractional bandwidth of an μ-negati...An effective approach to expand the bandwidth of negative permeability of small-sized planax materials is proposed. Based on qualitative analysis of equivalent circuit models, the fractional bandwidth of an μ-negative (MNG) material is expanded from 3.53% up to 12.87% by adding split-ring resonators (SRRs) and arranging them by proposed steps. Moreover, the experimental results validate the effectiveness of bandwidth-expanding methods, which is promising for the extensive application of metamaterials in the microwave field.展开更多
基金supported by the Excellent Youth Foundation of Henan Provincial Scientific Committee,China(Grant No.0612002200)the Key Scientific and Technological Research Foundation of Henan Province,China(Grant No.0623021600)
文摘In this paper, the electric and the magnetic dipole couplings between the outer and the inner rings of a single split ring resonator (SRR) are investigated. We numerically demonstrate that the magnetic resonance frequency can be substantially modified by changing the couplings of the electric and magnetic dipoles, and give a theoretical expression of the magnetic resonance frequency. The results in this work are expected to be conducive to a deeper understanding of the SRR and other similar metamaterials, and provide new guidance for complex metamaterials design with a tailored electromagnetic response.
文摘The transmission properties of double-ring split ring resonator(SRR) arrays and closed ring resonator arrays are measured using terahertz(THz) time-domain spectroscopy. This technique allows for the simultaneous measurement of the amplitude and phase of the transmission coefficient as a function of frequency. The ability to directly measure the phase spectrum is expected to be important in characterizing potential negative index media. In the employed experimental geometry, THz pulses are normally incident on the arrays. Thus, the magnetic field lies in the plane of the arrays and cannot contribute to the magnetic resonance of the SRR. However, it is found that the electric field, when appropriately polarized, can couple to the magnetic resonance. Shifts in the resonance properties with changes in the SRR dimensions and the substrate medium are measured, the results of which are consistent with theory.
文摘A novel microwave cloak using circular split ring resonator(SRR)based metamaterial structure has been proposed in this paper.The cloak which operates at a frequency of 10.6 GHz is composed of cylindrical dielectric sheets printed with circular split ring resonators of spatially varying and anisotropic material properties.The article also focuses on the phenomenon of resonant splitting in circular SRR microwave cloak.A detailed analysis of various linear metamaterial arrays and their response has also been elucidated.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2011AA010204the National Natural Science Foundation of China under Grant No 91438118
文摘A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the conventional double- split ring resonator away from the center, the second resonant frequency for the 0° polarized wave and the resonant frequency for the 90° polarized wave become increasingly close to each other until they are finally identical. Theoretical and experimental results show that the modified double-split ring resonator and the modified triple-split ring resonator are insensitive to different polarized waves and show strong resonant frequency dips near 433 and 444OHz, respectively. The results of this work suggest new opportunities for the investigation and design of polarization-dependent terahertz devices based on split ring resonators.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB339800)the National Natural Science Foundation of China(Grant Nos.11374358 and 61077082)
文摘Effects of oblique incidence of terahertz waves on the response of planar split-ring resonators are investigated, both experimentally and by simulation. It is found that the incident angle dependent phase delay and coupling conditions of neighboring split-ring resonator (SRR) units play important roles and greatly change both the transmission and reflection spectra for the resonant feature of linear charge oscillations. Our results show that the SRR structure-supported magne- toelectric couplings at oblique excitation are trivial and can be ignored. A highly symmetric response is found in the cross-polarization effects, which may manifest the bianisotropic properties of the SRR system but this needs further study.
文摘In this paper, we present the complex permittivity measurement of low-loss substrates based on a microstrip-line-excited split-ring resonator (SRR). Permittivity of an unknown substrate is calculated based on the change in oscillation frequency of SRR caused by the material-under-test (MUT) above the SRR. Theoretical analysis and results of the simulations and experiments demonstrate the microstrip-line-excited SRR can be used to effectively improve measurement sensitivity. Simple equations for measurement of low-loss substrates using SRR are proposed and experimentally verified.
基金Sponsored by the BIT Developing Foundation(1070050320726)
文摘To use the single split-ring resonator (SRR) as a basic unit cell for small antenna with multi-band frequency response is proposed. The structure of antenna is consisted of a single spilt-ring resonator and a coupled microstrip line. The designed antenna is numerically optimized with CST Microwave Studio. The radiation properties of the antenna show that there are three frequency bands among which two bands are 1.3 GHz and 2.1 GHz ultra-widehand (UWB), respectively, where Sll is less than - 10 dB. The gain at every frequency for the multi-hand antenna is above 2.6 dBi, and it increases monotonously with the frequency in the two UWB.
基金supported by the National Natural Science Foundation of China(Grant No.61001018)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2011FM009 and ZR2012FM011)+3 种基金the Research Fund of Shandong University of Science and Technology(SDUST),China(Grant No.2010KYJQ103)the SDUST Research Fund,China(Grant No.2012KYTD103)the Shandong Province Higher Educational Science and Technology Program,China(Grant No.J11LG20)the Qingdao Economic&Technical Development Zone Science&Technology Project,China(Grant No.2013-1-64)
文摘Novel band-stop filters with circular split-ring resonators based on the metal-insulator-metal (MIM) structure are presented, with their transmission properties of SPPs propagating through the filter simulated by the finite-difference time-domain (FDTD) method, The variation of the gap of the split ring can affect the transmission characteristics, i.e., the transmission spectrum of SPPs exhibiting a shift, which is useful for modulating the filter. Linear and nonlinear media are used in the resonator respectively. By varying the refractive index of the linear medium, the transmission properties can be changed obviously, and the effect caused by changing the incident intensity with a nonlinear medium is similar. Several resonant modes that are applicable can be enhanced by changing the position of the gap of the split ring. Thus, the transmission properties can be modulated by adjusting the size of the gap, varying the refractive index, and changing the incident intensity of the input light. These methods may play significant roles in applications of optical integrated circuits and nanostructural devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474097,11374099,and 11274116)the Open Fund of the State Key Laboratory of High Field Laser Physics(Shanghai Institute of Optics and Fine Mechanics)China
文摘This paper reports the plasmonic lasing of a split ring filled with gain material in water. The lasing mode(1500 nm)is far from the pump mode(980 nm), which can depress the detection noise from the pump light. The laser intensities of the two modes simultaneously increase by more than 10^3 in amplitude, which can intensify the absorption efficiency of the pumping light and enhance the plasmonic lasing. The plasmonic lasing is a sensitive sensor. When a single protein nanoparticle(n = 1.5, r = 1.25 nm) is trapped in the gap of the split ring, the lasing spectrum moves by 0.031 nm, which is much larger than the detection limit of 10^-5 nm. Moreover, the lasing intensity is also very sensitive to the trapped nanoparticle. It reduces to less than 1/600 when a protein nanoparticle(n = 1.5, r = 1.25 nm) is trapped in the gap.
基金Project supported partially by the National Natural Science Foundation of China (Grant Nos. 60872034 and 60971029)the New-Century Talent Program of the Education Department of China (Grant No. NCET070154)+1 种基金the National Defense Research Funding (Grant No. ZJ10DZ02111)the Hi-Tech Research and Development Program of China (Grant No. 2009AA01Z231)
文摘An effective approach to expand the bandwidth of negative permeability of small-sized planax materials is proposed. Based on qualitative analysis of equivalent circuit models, the fractional bandwidth of an μ-negative (MNG) material is expanded from 3.53% up to 12.87% by adding split-ring resonators (SRRs) and arranging them by proposed steps. Moreover, the experimental results validate the effectiveness of bandwidth-expanding methods, which is promising for the extensive application of metamaterials in the microwave field.
文摘针对移相器和功分器的功能融合设计,提出了一种基于慢波基片集成波导(Slow-Wave Substrate Integrated Waveguide,SW-SIW)的小型化移相功分器,两个输出分支等长带宽,可实现30°相移量.其中一个输出分支通过基片集成波导(Substrate Integrated Waveguide,SIW)实现,而另一个输出分支将互补开口谐振环(Complementary SplitRing Resonator,CSRR)加载在上层金属表面,代替传统SIW连续的金属表面,该CSRR由经典CSRR结构演变而来,同时为了降低由CSRR加载所造成的相位上的不稳定,在CSRR内部添加金属化通孔,实现SW-SIW,使得截止频率和相速度降低.测试结果表明,移相功分器在9.0~11.8 GHz频带范围内反射系数|S11|小于-10 d B,相对工作带宽为26.9%,插入损耗小于1.3 d B.两个输出端口的相位差稳定在30°±3°,幅度差小于1.4 d B,实现了等功率分配.所设计的移相功分器具有较小的尺寸和低制造成本,适合应用在相控阵天线中.