To study the effects of local nitrogen supply on water and nutrient absorption, French bean (Phaseolus vulgaris L.) plants were grown in a split root system. Five treatments supplied with different nitrogen forms we...To study the effects of local nitrogen supply on water and nutrient absorption, French bean (Phaseolus vulgaris L.) plants were grown in a split root system. Five treatments supplied with different nitrogen forms were compared: homogeneous nitrate (NN) and homogenous ammonium (AA) supply, spatially separated supply of nitrate and ammonium (NA), half of the root system supplied with N-free nutrient solution, the other half with either nitrate (NO) or ammonium (AO). The results showed that 10 d after onset of treatments, root dry matter (DM) in the nitratesupplied vessels treated with NA was more than two times higher than that in the ammonium-supplied vessels. Water uptake from the nitrate-supplied vessels treated with NA was 281% higher than under ammonium supply. In treatments NO and AO, the local supply of N resulted in clearly higher root DM, and water uptake from the nitratesupplied vessels was 82% higher than in the -N vessels. However, in AO plants, water uptake from the -N nutrient solution was 129% higher than from the ammonium-supplied vessels. This indicates a compensatory effect, which resulted in almost identical rates of total water uptake of treatments AA and AO, which had comparable shoot DM and leaf area. Ammonium supply reduced potassium and magnesium absorption. Water uptake was positively correlated with N, Mg and K uptake.展开更多
Let be an injective function. For a vertex labeling f, the induced edge labeling is defined by, or;then, the edge labels are distinct and are from . Then f is called a root square mean labeling of G. In this paper, we...Let be an injective function. For a vertex labeling f, the induced edge labeling is defined by, or;then, the edge labels are distinct and are from . Then f is called a root square mean labeling of G. In this paper, we prove root square mean labeling of some degree splitting graphs.展开更多
Split-root solution culture was used to study the promoting effect of lanthanum on rice (Oryza sativa) growth and its physiological mechanisms. Results sho w that low concentration (0.05~1.5 mg·L -1) increases...Split-root solution culture was used to study the promoting effect of lanthanum on rice (Oryza sativa) growth and its physiological mechanisms. Results sho w that low concentration (0.05~1.5 mg·L -1) increases rice yield an d grain numbers. High concentration depresses grain formation (9~30 mg·L -1 ) and root elongation (1.5~30 mg·L -1). No significant influence on str aw dry weight was found over the whole concentration range except the 0.05 mg·L -1 treatment. With the increase of La concentration from 0.05 to 0.75 mg· L -1, catalase (CAT) activity in the first fully expandeing leaves and root s decreases. When La concentration is greater than 0.75 mg·L -1 or less than 9 mg·L -1, it significantly decreases superoxide dismutase activity ( SOD) in the leaves and roots. No significant effects were found on chlorophyll, protein and malondialdehyde (MDA) content. Possible mechanisms of La′s promotin g effect on rice growth and reduction effect of ·O- 2 were discussed.展开更多
基金Supported by the Deutsche Forschungsgemeinschaft (Sa359/9) and the National Natural Science Foundation of China (30400279).Acknowledgements We thank Barbel Biegler and Anne ThieBen (Institute of Plant Nutrition and Soil Science, Kiel University, Germany) for skilled technical help.
文摘To study the effects of local nitrogen supply on water and nutrient absorption, French bean (Phaseolus vulgaris L.) plants were grown in a split root system. Five treatments supplied with different nitrogen forms were compared: homogeneous nitrate (NN) and homogenous ammonium (AA) supply, spatially separated supply of nitrate and ammonium (NA), half of the root system supplied with N-free nutrient solution, the other half with either nitrate (NO) or ammonium (AO). The results showed that 10 d after onset of treatments, root dry matter (DM) in the nitratesupplied vessels treated with NA was more than two times higher than that in the ammonium-supplied vessels. Water uptake from the nitrate-supplied vessels treated with NA was 281% higher than under ammonium supply. In treatments NO and AO, the local supply of N resulted in clearly higher root DM, and water uptake from the nitratesupplied vessels was 82% higher than in the -N vessels. However, in AO plants, water uptake from the -N nutrient solution was 129% higher than from the ammonium-supplied vessels. This indicates a compensatory effect, which resulted in almost identical rates of total water uptake of treatments AA and AO, which had comparable shoot DM and leaf area. Ammonium supply reduced potassium and magnesium absorption. Water uptake was positively correlated with N, Mg and K uptake.
文摘Let be an injective function. For a vertex labeling f, the induced edge labeling is defined by, or;then, the edge labels are distinct and are from . Then f is called a root square mean labeling of G. In this paper, we prove root square mean labeling of some degree splitting graphs.
文摘Split-root solution culture was used to study the promoting effect of lanthanum on rice (Oryza sativa) growth and its physiological mechanisms. Results sho w that low concentration (0.05~1.5 mg·L -1) increases rice yield an d grain numbers. High concentration depresses grain formation (9~30 mg·L -1 ) and root elongation (1.5~30 mg·L -1). No significant influence on str aw dry weight was found over the whole concentration range except the 0.05 mg·L -1 treatment. With the increase of La concentration from 0.05 to 0.75 mg· L -1, catalase (CAT) activity in the first fully expandeing leaves and root s decreases. When La concentration is greater than 0.75 mg·L -1 or less than 9 mg·L -1, it significantly decreases superoxide dismutase activity ( SOD) in the leaves and roots. No significant effects were found on chlorophyll, protein and malondialdehyde (MDA) content. Possible mechanisms of La′s promotin g effect on rice growth and reduction effect of ·O- 2 were discussed.