Concrete in reinforced concrete structure (RC) is generally under significant compressive stress load. To guarantee required quality and ductility, various tests have to be conducted to measure the concrete’s compres...Concrete in reinforced concrete structure (RC) is generally under significant compressive stress load. To guarantee required quality and ductility, various tests have to be conducted to measure the concrete’s compressive strength based on ACI (American Concrete Institute) code. Investigations of recent devastating collapses of structures around the world showed that some of the collapses directly resulted from the poor quality of the concrete. The lesson learned from these tragedies is that guaranteeing high quality of concrete is one of the most important factors ensuring the safety of the reinforced concrete structure. In order to ensure high quality of concrete, a new method for analyzing and evaluating the concrete production process is called for. In this paper, the indices of fit and stable degree are proposed as basis to evaluate the fitness and stability of concrete’s compressive strength. These two indices are combined to define and evaluate the quality index of the compressive strength of concrete. Prin-ciples of statistics are used to derive the best estimators of these indices. Based on the outcome of the study, a concrete compres-sive strength quality control chart is proposed as a tool to help the evaluation process. Finally, a new evaluation procedure to assess the quality control capability of the individual concrete manufacturer is also proposed.展开更多
Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters....Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters. The principle on establishing the coupling model of seepage_field and stress_field for RCCD was presented. A 3_D Finite Element Method(FEM) program was developed. Study shows that such parameters as the thickness of construction interfaces,the elastic ratio and the (Poisson's) ratio obtained by tests and theoretical analysis are more reasonable, the coupling model of seepage_field and stress_field for RCCD may indicate the coupling effect between the two fields scientifically, and the developed 3_D FEM program can reflect the effect of the construction interfaces more adequately. According to the study, many scientific opinions are given both to analyze the influence of the construction interfaces to the (dam's) characteristic, and to reveal the interaction between the stress_field and the seepage_field.展开更多
The effect zones of layer face for RCC (rolled control concrete) dam have gradual change characteristics. Based on the analysis thought of complex material, a model was built to analyze above principle of RCC dam by...The effect zones of layer face for RCC (rolled control concrete) dam have gradual change characteristics. Based on the analysis thought of complex material, a model was built to analyze above principle of RCC dam by use of series-wound and shunt-wound connection. Some methods were proposed to determine the instantaneous Young's modulus, delayed Young's modulus and viscosity coefficient of effect zones of layer face. Above models and methods were used to mine the principle of gradual change of key calculation parameters which can response the characteristics of effect zones. The principle of gradual change was described. A model was established to analyze the threedimensional viscoelastic problem of RCC dam. Above programs were developed. The examples show that the proposed models and methods to determine the key calculation parameters of effect zones can reflect the status of RCC dam accurately.展开更多
The complete splitting process of steel fiber reinforced concrete (SFRC) at intermediate strain rate was studied by experiment. The basic information of a self-developed SFRC dynamic test system matching with lnstro...The complete splitting process of steel fiber reinforced concrete (SFRC) at intermediate strain rate was studied by experiment. The basic information of a self-developed SFRC dynamic test system matching with lnstron 1342 materials testing machine was given, and the experiment principle and the loading mode of cubic split specimen were introduced. During the experiment, 30 cubes of 150 mm×150 mm×150 mm and 36 cubes of 100 mm×100 mm×100 mm, designed and prepared according to C20 class SFRC with different volume fractions of steel fiber (0, 1%, 2%, 3%, 4%) were tested and analyzed. At the same time, the size effect of SFRC at intermediate strain rate was investigated. The experimental study indicates that SFRC size effect is not influenced by the loading speed or strain rate. When the steel fiber content increases from 0 to 4%, the splitting strength of SFRC increases from 100% to 261%, i.e. increasing by 161% compared with that of the common concrete. The loading rate increases from 1.33 kN/s to 80.00 kN/s, and the splitting tensile strength increases by 43.55%.展开更多
The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix develop...The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens was used experimentally and the cracked non-linear hinge model based on the fictitious crack model was applied for the interpretation of the results. The stress-crack opening relationships were extracted by using inverse analysis algorithm for various multi-linear softening curves. This showed that the refinement of the softening curves reflects in improved accuracy of the WST (wedge splitting test) simulation in comparison with bi-linear softening curves with acceptable increase of computational time. Furthermore, the fracture mechanics parameters such as COD (crack opening displacement), fracture energy and characteristic length were experimentally determined. Experiments were performed at 1, 3, 7 and 28 days. Fracture energy, Gf, was found to increase with age, while the characteristic length, Lch, was found to decrease.展开更多
Human development is inherently connected with availability of water and energy.Energy production requires water,whereas water treatment needs energy.On the other hand,microbial fuel cell has capability to produce ene...Human development is inherently connected with availability of water and energy.Energy production requires water,whereas water treatment needs energy.On the other hand,microbial fuel cell has capability to produce energy and water simultaneously from waste water or organic matter.In this paper,first principle-based model of variable volume microbial fuel cell is simulated.Hydraulic retention time is selected as the manipulated variable using the study of steady state and dynamic responses.Classical PI and model predictive control strategies are developed for controlling the produced power from the cell,and its performance is tested for servo problem.Settling time for positive and negative set points is found to be 126 and 889 h in case of classical PI and 120 and 750 h in case of linear MPC,respectively along with large increase(three times order of magnitude)in working volume for negative set point.These control challenges are overcome by using split range controller with variable and constant volume microbial fuel cells.The settling time for negative set point is found to be 49 and 21 h for classical PI and linear MPC schemes,respectively,which is significantly lower than using only variable volume microbial fuel cell.Also,there is no increase in the working volume of the constant volume microbial fuel cell.Hence,operating range of the microbial fuel cell is enhanced using split range controller.展开更多
Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed und...Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one.展开更多
Taking advantage of heat absorbing and releasing capability of phase change material(PCM),Paraffin wax-based concrete was prepared to assess its automatic temperature control performance.The mechanical properties of P...Taking advantage of heat absorbing and releasing capability of phase change material(PCM),Paraffin wax-based concrete was prepared to assess its automatic temperature control performance.The mechanical properties of PCM concrete with eight different Paraffin wax contents were tested by the cube compression test and four-point bending test.The more Paraffin wax incorporated,the greater loss of the compressive strength and bending strength.Based on the mechanical results,four contents of Paraffin wax were chosen for studying PCM concrete's thermal properties,including thermal conductivity,thermal diffusivity,specific heat capacity,thermal expansion coefficient and adiabatic temperature rise.When the Paraffin wax content increases from 10%to 20%,the thermal conductivity and the thermal diffusivity decrease from 7.31 kJ/(m·h·°C)to 7.10 kJ/(m·h·°C)and from 3.03×10−3 m2/h to 2.44×10−3 m2/h,respectively.Meanwhile the specific heat capacity and thermal expansion coefficient rise from 5.38×10−1 kJ/(kg·°C)to 5.76×10−1 kJ/(kg·°C)and from 9.63×10−6/°C to 14.02×10−6/°C,respectively.The adiabatic temperature rise is found to decrease with an increasing Paraffin wax content.Considering both the mechanical and thermal properties,15%of Paraffin wax was elected for the mass concrete model test,and the model test results confirm the effect of Paraffin wax in automatic mass concrete temperature control.展开更多
C30 coral aggregate concrete with chlorella control effect was prepared by adding nano-TiO_(2) and hydrophobic material,and the effects of nano-TiO_(2) and hydrophobic material on the basic properties of C30 coral agg...C30 coral aggregate concrete with chlorella control effect was prepared by adding nano-TiO_(2) and hydrophobic material,and the effects of nano-TiO_(2) and hydrophobic material on the basic properties of C30 coral aggregate concrete and chlorella control effect under different experimental conditions were compared.The experimental results show that nano-TiO_(2) and hydrophobic materials have a certain degree of influence on the basic properties of concrete,but the influence is not significant.Under long-term immersion,nano-TiO_(2) and hydrophobic materials can inhibit the growth of Chlorella vulgaris.The maximum fluorescence value of concrete is decreased by 53.6% after adding TiO_(2),and the maximum fluorescence value of concrete is prolonged by 20%(1 day).The maximum fluorescence value of concrete is decreased by 67.7% after adding hydrophobic materials,and the maximum fluorescence value of concrete is also prolonged by 20%(1 day);Under the condition of simulated tidal water,the inhibition effect of Nano-TiO_(2) on the growth degree and growth rate of Chlorella vulgaris is weakened,at this time the maximum fluorescence value of concrete mixed with nano-TiO_(2) is decreased by 50.5%,and the maximum fluorescence value is only prolonged by 14.3%;while the inhibition of hydrophobic materials on the growth degree and growth rate of Chlorella vulgaris is enhanced significantly,and the maximum fluorescence value of concrete with hydrophobic materials is decreased by 80.3%;the maximum fluorescence time is prolonged by 114.3%.展开更多
Deformation can directly reflect the working behavior of the dam,so determining the deformation monitoring control value can effectively monitor the safety of dam operation.The traditional dam deformation monitoring c...Deformation can directly reflect the working behavior of the dam,so determining the deformation monitoring control value can effectively monitor the safety of dam operation.The traditional dam deformation monitoring control value only considers the single measuring point.In order to overcome the limitation,this paper presents a new method to determine the monitoring control value for concrete gravity dam based on the deformations of multi-measuring points.A dam’s comprehensive deformation displacement is determined by the measured values at different measuring points on the positive inverted vertical line and the corresponding weight of eachmeasuring point.The projection pursuit method(PPM)combined with the grey wolf optimization(GWO)algorithm is used to determine the weight of each measuring point according to the spatial correlation distribution characteristics of dam deformation.The peaks over threshold(POT)model based on the extreme value theory is adopted to determine the monitoring control value with the obtained dam comprehensive deformation displacement.In addition,the POTmodel is improved with the automatic threshold determinationmethod based on the 3σcriterion in probability theory and the GWO algorithm,which can avoid subjectivity and randomness in determining the threshold.The results of the engineering application show the feasibility and applicability of the proposed method.展开更多
Legacy IP address-based access control has met many challenges, because the network nodes cannot be identified accurately based on their variable IP addresses. “Locator/Identifier Split” has made it possible to buil...Legacy IP address-based access control has met many challenges, because the network nodes cannot be identified accurately based on their variable IP addresses. “Locator/Identifier Split” has made it possible to build a network access control mechanism based on the permanent identifier. With the support of “Locator/Identifier Split” routing and addressing concept, the Identifier-based Access Control (IBAC) makes net-work access control more accurate and efficient, and fits for mobile nodes’ access control quite well. Moreover, Self-verifying Identifier makes it possible for the receiver to verify the packet sender’s identity without the third part authentication, which greatly reduces the probability of “Identifier Spoofing”.展开更多
Temperature control curve is the key to achieving temperature control and crack prevention of high concrete dam during construction,and its rationality depends on the accurate measurement of temperature stress.With th...Temperature control curve is the key to achieving temperature control and crack prevention of high concrete dam during construction,and its rationality depends on the accurate measurement of temperature stress.With the simulation testing machine for the temperature stress,in the present study,we carried out the deformation process tests of concrete under three temperature curves:convex,straight and concave.Besides,we not only measured the early-age elastic modulus,creep parameters and stress process,but also proposed the preferred type.The results show that at early age,higher temperature always leads to greater elastic modulus and smaller creep.However,the traditional indoor experiments have underestimated the elastic modulus and creep development at early age,which makes the calculated value of temperature stress too small,thus increasing the cracking risk.In this study,the stress values of the three curves calculated based on the strain and early-age parameters are in good agreement with the temperature stress measured by the temperature stress testing machine,which verifies the method accuracy.When the temperature changes along the concave curve,the law of stress development is in consistent with that of strength.Under this condition,the stress fluctuation is small and the crack prevention safety of the concave type is higher,so the concave type is better.The test results provide a reliable basis and support for temperature control curve design and optimization of concrete dams.展开更多
The main material of concrete is a construction building material composed of water and mineral mixture and cement and chemical additives in the corresponding proportion and below the standard.In the process of making...The main material of concrete is a construction building material composed of water and mineral mixture and cement and chemical additives in the corresponding proportion and below the standard.In the process of making concrete material,slurry and cement are needed to mix,then cement slurry and sand are mixed into mortar according to the corresponding proportion,and aggregate is added to mortar to form concrete building material.In the process of concrete preparation,the most important construction link is mixing,which needs to be fully stirred to make the performance of concrete meet the construction needs.In the process of concrete construction technology development,both mix ratio and production technology have become more and more mature,but there are still some problems,which have an impact on the quality of concrete[1].Therefore,this paper discusses the quality control of concrete raw materials according to the construction process of road and bridge.展开更多
In the manufacturing processes of high value-added products in the pharmaceutical, fine chemical polymer and food industry, insufficient control might produce off-grade products. This can cause significant financial l...In the manufacturing processes of high value-added products in the pharmaceutical, fine chemical polymer and food industry, insufficient control might produce off-grade products. This can cause significant financial losses, or in the pharmaceutical industry, it can result in an unusable batch. In these industries, batch reactors are commonly used, the control of which is essentially a problem of temperature control. In the industry, an increasing number of heating-cooling systems utilising three different temperature levels can be found, which are advantageous from an economic point of view. However, it makes the control more complicated. This paper presents a split-range designing technique using the model of the controlled system with the aim to design a split-range algorithm more specific to the actual sys- tem. The algorithm described provides high control performance when using it with classical PID-based cascade temperature control of jacketed batch reactors;however, it can be used with or as part of other types of controllers, for ex- ample, model-based temperature controllers. The algorithm can be used in the case of systems where only two as well as where three temperature levels are used for temperature control. Besides the switching between the modes of opera- tion and calculating the value of the manipulated variable, one of the most important functions of the split-range algo- rithm is to keep the sign of the gain of the controlled system unchanged. However, with a more system-specific split-range solution, not only can the sign of the gain be kept unchanged, but the gain can also be constant or less de- pendent on the state of the system. Using this solution, the design of the PID controller becomes simpler and can be implemented in existing systems without serious changes.展开更多
In the process of continuous development of construction enterprises, new requirements have been put forward for construction projects. By strengthening the construction quality control of reinforced concrete shear wa...In the process of continuous development of construction enterprises, new requirements have been put forward for construction projects. By strengthening the construction quality control of reinforced concrete shear wall structure, the construction level of reinforced concrete can be continuously improved, the construction quality can be guaranteed, and the construction project can be successfully completed, which is worthy of extensive application and promotion in construction enterprises, thus providing a broader development space for construction enterprises.展开更多
Out-of-step oscillation is a very destructive physical phenomenon in power system, which could directly cause big blackout accompanied by serious sociology-economic impacts. Out-of-step splitting control is an indispe...Out-of-step oscillation is a very destructive physical phenomenon in power system, which could directly cause big blackout accompanied by serious sociology-economic impacts. Out-of-step splitting control is an indispensable means, which could protect the system from major shocks of out-of-step oscillation. After years of development, it has achieved certain amount of research results. Have the existing methods been able to meet the requirements of out-of-step splitting? What improvements are needed? Under this background, this review is written. It combs the development of out-of-step splitting control technologies and analyzes the technical routes and characteristics of different methods. It points out the contradiction between rapidity and optimality is the biggest technical problem, existing in both the traditional local measurement based out-of-step splitting protection and the wide-area information based out-of-step splitting protection. It further points out that the advantages of the two types of protections can be combined with the unique physical characteristics of the out-of-step center to form a more advantageous splitting strategy. Besides, facing the fact of large-scale renewable energy access to power grid in recent years, this review also analyzes the challenges brought by it and provides some corresponding suggestions. It is hoped to provide some guidance for the subsequent research work.展开更多
The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water th...The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water through the public network. However, questions remain as to the physico-chemical quality of the water stored in these tanks, when these structures are built in wet and relatively polluted areas. This paper presents a model of pollutant diffusion through the cementitious matrix (concrete) of tank walls simulated at a buried reservoir. The results of the experimental and numerical simulations show that certain concrete parameters, such as porosity, permeability and diffusivity, have a significant influence on the transfer of pollutants through the concrete walls, thus altering the physico-chemical quality of the stored water. The numerical models (1D) used to predict pollutant transfer and the quality of the stored water are consistent with those of the optimal control for identifying the diffusion coefficient. Major ion concentrations appear to be correlated with system porosity and diffusion coefficient. Nevertheless, the identification of the diffusion coefficient from the optimal control method, based on an explicit numerical resolution of a finite volume PDE for the approximation of the experiment, is not consistent with that of the optimal control method.展开更多
This study empirically investigated the influence of freeze-thaw cycling on the dynamic splitting tensile properties of steel fiber reinforced concrete(SFRC).Brazilian disc splitting tests were conducted using four lo...This study empirically investigated the influence of freeze-thaw cycling on the dynamic splitting tensile properties of steel fiber reinforced concrete(SFRC).Brazilian disc splitting tests were conducted using four loading rates(0.002,0.02,0.2,and 2 mm/s)on specimens with four steel fiber contents(0%,0.6%,1.2%,and 1.8%)subjected to 0 and 50 freeze-thaw cycles.The dynamic splitting tensile damage characteristics were evaluated using acoustic emission(AE)parameter analysis and Fourier transform spectral analysis.The results quantified using the freeze-thaw damage factor defined in this paper indicate that the degree of damage to SFRC caused by freeze-thaw cycling was aggravated with increasing loading rate but mitigated by increasing fiber content.The percentage of low-frequency AE signals produced by the SFRC specimens during loading decreased with increasing loading rate,whereas that of high-frequency AE signals increased.Freeze-thaw action had little effect on the crack types observed during the early and middle stages of the loading process;however,the primary crack type observed during the later stage of loading changed from shear to tensile after the SFRC specimens were subjected to freeze-thaw cycling.Notably,the results of this study indicate that the freeze-thaw damage to SFRC reduces AE signal activity at low frequencies.展开更多
Split Hopkinson pressure bar (SHPB) technique is used to determine the dynamic strength of reactive powder concretes (RPCs) with different steel-fiber contents. Two types of pulse shapers with different thicknesse...Split Hopkinson pressure bar (SHPB) technique is used to determine the dynamic strength of reactive powder concretes (RPCs) with different steel-fiber contents. Two types of pulse shapers with different thicknesses are considered to reduce the high-frequency-oscillation effect and achieve a nearly constant strain rate over a certain deformation range. It is known that the compressive strength of concrete-like materials is hydrostatic-stress-dependent, and the apparent dynamic strength enhancement comes from both the effects of the hydrostatic stress and strain rate. In order to differentiate them, numerical method is used to calculate the contribution of the hydrostatic stress, and then the genuine strain-rate effect on dynamic compressive strength of RPCs is determined. In addition, the effect of steel-fibers on dynamic strength and failure mode of RPCs is discussed.展开更多
The impact behaviour of three types of reactive powder concretes (RPC) was studied using the split Hopkinson press bar (SHPB) testing method. These RPC were prepared with steel fiber volume fraction of 0%, 3%, and...The impact behaviour of three types of reactive powder concretes (RPC) was studied using the split Hopkinson press bar (SHPB) testing method. These RPC were prepared with steel fiber volume fraction of 0%, 3%, and 4%, respectively. The stress-strain relationship, strain rate sensitivity threshold value, dynamic strength increase factor, modulus of elasticity and failure pattern of these RPC specimens subjected to impact load were investigated. From the tests, the strain rate sensitivity threshold value of 50 s-1 was obtained. The experimental results showed that when the strain rate increased from the threshold value to 95 s-1, the maximum stress of RPC increased by about 20% and the modulus of elasticity of RPC increased by about 30%. The failure pattern of RPC specimens with steel fiber reinforcement was very different from that of the RPC matrix specimen when subjected to impact loading. Under similar impact loading rate, cracks developed in the steel fiber reinforced RPC specimens, whilst the RPC matrix specimens were broken into small pieces.展开更多
基金Project (No. NSC92-2213-e-167-001) supported by the National Science Council, Taiwan, China
文摘Concrete in reinforced concrete structure (RC) is generally under significant compressive stress load. To guarantee required quality and ductility, various tests have to be conducted to measure the concrete’s compressive strength based on ACI (American Concrete Institute) code. Investigations of recent devastating collapses of structures around the world showed that some of the collapses directly resulted from the poor quality of the concrete. The lesson learned from these tragedies is that guaranteeing high quality of concrete is one of the most important factors ensuring the safety of the reinforced concrete structure. In order to ensure high quality of concrete, a new method for analyzing and evaluating the concrete production process is called for. In this paper, the indices of fit and stable degree are proposed as basis to evaluate the fitness and stability of concrete’s compressive strength. These two indices are combined to define and evaluate the quality index of the compressive strength of concrete. Prin-ciples of statistics are used to derive the best estimators of these indices. Based on the outcome of the study, a concrete compres-sive strength quality control chart is proposed as a tool to help the evaluation process. Finally, a new evaluation procedure to assess the quality control capability of the individual concrete manufacturer is also proposed.
文摘Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters. The principle on establishing the coupling model of seepage_field and stress_field for RCCD was presented. A 3_D Finite Element Method(FEM) program was developed. Study shows that such parameters as the thickness of construction interfaces,the elastic ratio and the (Poisson's) ratio obtained by tests and theoretical analysis are more reasonable, the coupling model of seepage_field and stress_field for RCCD may indicate the coupling effect between the two fields scientifically, and the developed 3_D FEM program can reflect the effect of the construction interfaces more adequately. According to the study, many scientific opinions are given both to analyze the influence of the construction interfaces to the (dam's) characteristic, and to reveal the interaction between the stress_field and the seepage_field.
基金Project supported by the National Natural Science Foundation of China (Nos.50579010, 50539010)the National Basic Research Program of China (973 Program) (No.2002CB412707)the National Basic Research Program of Ministry of Water Resources, China (No.CT200612)
文摘The effect zones of layer face for RCC (rolled control concrete) dam have gradual change characteristics. Based on the analysis thought of complex material, a model was built to analyze above principle of RCC dam by use of series-wound and shunt-wound connection. Some methods were proposed to determine the instantaneous Young's modulus, delayed Young's modulus and viscosity coefficient of effect zones of layer face. Above models and methods were used to mine the principle of gradual change of key calculation parameters which can response the characteristics of effect zones. The principle of gradual change was described. A model was established to analyze the threedimensional viscoelastic problem of RCC dam. Above programs were developed. The examples show that the proposed models and methods to determine the key calculation parameters of effect zones can reflect the status of RCC dam accurately.
文摘The complete splitting process of steel fiber reinforced concrete (SFRC) at intermediate strain rate was studied by experiment. The basic information of a self-developed SFRC dynamic test system matching with lnstron 1342 materials testing machine was given, and the experiment principle and the loading mode of cubic split specimen were introduced. During the experiment, 30 cubes of 150 mm×150 mm×150 mm and 36 cubes of 100 mm×100 mm×100 mm, designed and prepared according to C20 class SFRC with different volume fractions of steel fiber (0, 1%, 2%, 3%, 4%) were tested and analyzed. At the same time, the size effect of SFRC at intermediate strain rate was investigated. The experimental study indicates that SFRC size effect is not influenced by the loading speed or strain rate. When the steel fiber content increases from 0 to 4%, the splitting strength of SFRC increases from 100% to 261%, i.e. increasing by 161% compared with that of the common concrete. The loading rate increases from 1.33 kN/s to 80.00 kN/s, and the splitting tensile strength increases by 43.55%.
文摘The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens was used experimentally and the cracked non-linear hinge model based on the fictitious crack model was applied for the interpretation of the results. The stress-crack opening relationships were extracted by using inverse analysis algorithm for various multi-linear softening curves. This showed that the refinement of the softening curves reflects in improved accuracy of the WST (wedge splitting test) simulation in comparison with bi-linear softening curves with acceptable increase of computational time. Furthermore, the fracture mechanics parameters such as COD (crack opening displacement), fracture energy and characteristic length were experimentally determined. Experiments were performed at 1, 3, 7 and 28 days. Fracture energy, Gf, was found to increase with age, while the characteristic length, Lch, was found to decrease.
文摘Human development is inherently connected with availability of water and energy.Energy production requires water,whereas water treatment needs energy.On the other hand,microbial fuel cell has capability to produce energy and water simultaneously from waste water or organic matter.In this paper,first principle-based model of variable volume microbial fuel cell is simulated.Hydraulic retention time is selected as the manipulated variable using the study of steady state and dynamic responses.Classical PI and model predictive control strategies are developed for controlling the produced power from the cell,and its performance is tested for servo problem.Settling time for positive and negative set points is found to be 126 and 889 h in case of classical PI and 120 and 750 h in case of linear MPC,respectively along with large increase(three times order of magnitude)in working volume for negative set point.These control challenges are overcome by using split range controller with variable and constant volume microbial fuel cells.The settling time for negative set point is found to be 49 and 21 h for classical PI and linear MPC schemes,respectively,which is significantly lower than using only variable volume microbial fuel cell.Also,there is no increase in the working volume of the constant volume microbial fuel cell.Hence,operating range of the microbial fuel cell is enhanced using split range controller.
基金Supported by National Science Fund for Distinguished Young Scholars of China( No. 50425824
文摘Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one.
基金This work is jointly supported by the National Natural Science Foundation of China(Grant Nos.51909223,51902270)the National Science Fund for Distinguished Young Scholars(Grant No.41825015)+2 种基金the Natural Science Basic Research Program of Shaanxi(Grant No.2019JQ-921)the Special research project of the Education Department of Shaanxi Provincial Government(Grant No.19JK0913)the Special Fund for the Launch of Scientific Research in Xijing University(Grant No.XJ18T02).
文摘Taking advantage of heat absorbing and releasing capability of phase change material(PCM),Paraffin wax-based concrete was prepared to assess its automatic temperature control performance.The mechanical properties of PCM concrete with eight different Paraffin wax contents were tested by the cube compression test and four-point bending test.The more Paraffin wax incorporated,the greater loss of the compressive strength and bending strength.Based on the mechanical results,four contents of Paraffin wax were chosen for studying PCM concrete's thermal properties,including thermal conductivity,thermal diffusivity,specific heat capacity,thermal expansion coefficient and adiabatic temperature rise.When the Paraffin wax content increases from 10%to 20%,the thermal conductivity and the thermal diffusivity decrease from 7.31 kJ/(m·h·°C)to 7.10 kJ/(m·h·°C)and from 3.03×10−3 m2/h to 2.44×10−3 m2/h,respectively.Meanwhile the specific heat capacity and thermal expansion coefficient rise from 5.38×10−1 kJ/(kg·°C)to 5.76×10−1 kJ/(kg·°C)and from 9.63×10−6/°C to 14.02×10−6/°C,respectively.The adiabatic temperature rise is found to decrease with an increasing Paraffin wax content.Considering both the mechanical and thermal properties,15%of Paraffin wax was elected for the mass concrete model test,and the model test results confirm the effect of Paraffin wax in automatic mass concrete temperature control.
基金Funded by the National Key R&D Program of China(No.2017YFB0309902)the Youth Fund of CABR Fund Project(No.20210122371030009)。
文摘C30 coral aggregate concrete with chlorella control effect was prepared by adding nano-TiO_(2) and hydrophobic material,and the effects of nano-TiO_(2) and hydrophobic material on the basic properties of C30 coral aggregate concrete and chlorella control effect under different experimental conditions were compared.The experimental results show that nano-TiO_(2) and hydrophobic materials have a certain degree of influence on the basic properties of concrete,but the influence is not significant.Under long-term immersion,nano-TiO_(2) and hydrophobic materials can inhibit the growth of Chlorella vulgaris.The maximum fluorescence value of concrete is decreased by 53.6% after adding TiO_(2),and the maximum fluorescence value of concrete is prolonged by 20%(1 day).The maximum fluorescence value of concrete is decreased by 67.7% after adding hydrophobic materials,and the maximum fluorescence value of concrete is also prolonged by 20%(1 day);Under the condition of simulated tidal water,the inhibition effect of Nano-TiO_(2) on the growth degree and growth rate of Chlorella vulgaris is weakened,at this time the maximum fluorescence value of concrete mixed with nano-TiO_(2) is decreased by 50.5%,and the maximum fluorescence value is only prolonged by 14.3%;while the inhibition of hydrophobic materials on the growth degree and growth rate of Chlorella vulgaris is enhanced significantly,and the maximum fluorescence value of concrete with hydrophobic materials is decreased by 80.3%;the maximum fluorescence time is prolonged by 114.3%.
文摘Deformation can directly reflect the working behavior of the dam,so determining the deformation monitoring control value can effectively monitor the safety of dam operation.The traditional dam deformation monitoring control value only considers the single measuring point.In order to overcome the limitation,this paper presents a new method to determine the monitoring control value for concrete gravity dam based on the deformations of multi-measuring points.A dam’s comprehensive deformation displacement is determined by the measured values at different measuring points on the positive inverted vertical line and the corresponding weight of eachmeasuring point.The projection pursuit method(PPM)combined with the grey wolf optimization(GWO)algorithm is used to determine the weight of each measuring point according to the spatial correlation distribution characteristics of dam deformation.The peaks over threshold(POT)model based on the extreme value theory is adopted to determine the monitoring control value with the obtained dam comprehensive deformation displacement.In addition,the POTmodel is improved with the automatic threshold determinationmethod based on the 3σcriterion in probability theory and the GWO algorithm,which can avoid subjectivity and randomness in determining the threshold.The results of the engineering application show the feasibility and applicability of the proposed method.
文摘Legacy IP address-based access control has met many challenges, because the network nodes cannot be identified accurately based on their variable IP addresses. “Locator/Identifier Split” has made it possible to build a network access control mechanism based on the permanent identifier. With the support of “Locator/Identifier Split” routing and addressing concept, the Identifier-based Access Control (IBAC) makes net-work access control more accurate and efficient, and fits for mobile nodes’ access control quite well. Moreover, Self-verifying Identifier makes it possible for the receiver to verify the packet sender’s identity without the third part authentication, which greatly reduces the probability of “Identifier Spoofing”.
基金National Key R&D Plan Project(No.2021YFC3090102)。
文摘Temperature control curve is the key to achieving temperature control and crack prevention of high concrete dam during construction,and its rationality depends on the accurate measurement of temperature stress.With the simulation testing machine for the temperature stress,in the present study,we carried out the deformation process tests of concrete under three temperature curves:convex,straight and concave.Besides,we not only measured the early-age elastic modulus,creep parameters and stress process,but also proposed the preferred type.The results show that at early age,higher temperature always leads to greater elastic modulus and smaller creep.However,the traditional indoor experiments have underestimated the elastic modulus and creep development at early age,which makes the calculated value of temperature stress too small,thus increasing the cracking risk.In this study,the stress values of the three curves calculated based on the strain and early-age parameters are in good agreement with the temperature stress measured by the temperature stress testing machine,which verifies the method accuracy.When the temperature changes along the concave curve,the law of stress development is in consistent with that of strength.Under this condition,the stress fluctuation is small and the crack prevention safety of the concave type is higher,so the concave type is better.The test results provide a reliable basis and support for temperature control curve design and optimization of concrete dams.
文摘The main material of concrete is a construction building material composed of water and mineral mixture and cement and chemical additives in the corresponding proportion and below the standard.In the process of making concrete material,slurry and cement are needed to mix,then cement slurry and sand are mixed into mortar according to the corresponding proportion,and aggregate is added to mortar to form concrete building material.In the process of concrete preparation,the most important construction link is mixing,which needs to be fully stirred to make the performance of concrete meet the construction needs.In the process of concrete construction technology development,both mix ratio and production technology have become more and more mature,but there are still some problems,which have an impact on the quality of concrete[1].Therefore,this paper discusses the quality control of concrete raw materials according to the construction process of road and bridge.
文摘In the manufacturing processes of high value-added products in the pharmaceutical, fine chemical polymer and food industry, insufficient control might produce off-grade products. This can cause significant financial losses, or in the pharmaceutical industry, it can result in an unusable batch. In these industries, batch reactors are commonly used, the control of which is essentially a problem of temperature control. In the industry, an increasing number of heating-cooling systems utilising three different temperature levels can be found, which are advantageous from an economic point of view. However, it makes the control more complicated. This paper presents a split-range designing technique using the model of the controlled system with the aim to design a split-range algorithm more specific to the actual sys- tem. The algorithm described provides high control performance when using it with classical PID-based cascade temperature control of jacketed batch reactors;however, it can be used with or as part of other types of controllers, for ex- ample, model-based temperature controllers. The algorithm can be used in the case of systems where only two as well as where three temperature levels are used for temperature control. Besides the switching between the modes of opera- tion and calculating the value of the manipulated variable, one of the most important functions of the split-range algo- rithm is to keep the sign of the gain of the controlled system unchanged. However, with a more system-specific split-range solution, not only can the sign of the gain be kept unchanged, but the gain can also be constant or less de- pendent on the state of the system. Using this solution, the design of the PID controller becomes simpler and can be implemented in existing systems without serious changes.
文摘In the process of continuous development of construction enterprises, new requirements have been put forward for construction projects. By strengthening the construction quality control of reinforced concrete shear wall structure, the construction level of reinforced concrete can be continuously improved, the construction quality can be guaranteed, and the construction project can be successfully completed, which is worthy of extensive application and promotion in construction enterprises, thus providing a broader development space for construction enterprises.
基金supported by the National Natural Science Foundation of China(Grant No.62273207,61821004,62350083,62192755)the Future Young Scholars Program of Shandong University,China.
文摘Out-of-step oscillation is a very destructive physical phenomenon in power system, which could directly cause big blackout accompanied by serious sociology-economic impacts. Out-of-step splitting control is an indispensable means, which could protect the system from major shocks of out-of-step oscillation. After years of development, it has achieved certain amount of research results. Have the existing methods been able to meet the requirements of out-of-step splitting? What improvements are needed? Under this background, this review is written. It combs the development of out-of-step splitting control technologies and analyzes the technical routes and characteristics of different methods. It points out the contradiction between rapidity and optimality is the biggest technical problem, existing in both the traditional local measurement based out-of-step splitting protection and the wide-area information based out-of-step splitting protection. It further points out that the advantages of the two types of protections can be combined with the unique physical characteristics of the out-of-step center to form a more advantageous splitting strategy. Besides, facing the fact of large-scale renewable energy access to power grid in recent years, this review also analyzes the challenges brought by it and provides some corresponding suggestions. It is hoped to provide some guidance for the subsequent research work.
文摘The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water through the public network. However, questions remain as to the physico-chemical quality of the water stored in these tanks, when these structures are built in wet and relatively polluted areas. This paper presents a model of pollutant diffusion through the cementitious matrix (concrete) of tank walls simulated at a buried reservoir. The results of the experimental and numerical simulations show that certain concrete parameters, such as porosity, permeability and diffusivity, have a significant influence on the transfer of pollutants through the concrete walls, thus altering the physico-chemical quality of the stored water. The numerical models (1D) used to predict pollutant transfer and the quality of the stored water are consistent with those of the optimal control for identifying the diffusion coefficient. Major ion concentrations appear to be correlated with system porosity and diffusion coefficient. Nevertheless, the identification of the diffusion coefficient from the optimal control method, based on an explicit numerical resolution of a finite volume PDE for the approximation of the experiment, is not consistent with that of the optimal control method.
文摘This study empirically investigated the influence of freeze-thaw cycling on the dynamic splitting tensile properties of steel fiber reinforced concrete(SFRC).Brazilian disc splitting tests were conducted using four loading rates(0.002,0.02,0.2,and 2 mm/s)on specimens with four steel fiber contents(0%,0.6%,1.2%,and 1.8%)subjected to 0 and 50 freeze-thaw cycles.The dynamic splitting tensile damage characteristics were evaluated using acoustic emission(AE)parameter analysis and Fourier transform spectral analysis.The results quantified using the freeze-thaw damage factor defined in this paper indicate that the degree of damage to SFRC caused by freeze-thaw cycling was aggravated with increasing loading rate but mitigated by increasing fiber content.The percentage of low-frequency AE signals produced by the SFRC specimens during loading decreased with increasing loading rate,whereas that of high-frequency AE signals increased.Freeze-thaw action had little effect on the crack types observed during the early and middle stages of the loading process;however,the primary crack type observed during the later stage of loading changed from shear to tensile after the SFRC specimens were subjected to freeze-thaw cycling.Notably,the results of this study indicate that the freeze-thaw damage to SFRC reduces AE signal activity at low frequencies.
基金supported by the National Natural Science Foundation of China (Nos.10502005 and 10872025)the Ministry of Education of the People’s Republic of China.
文摘Split Hopkinson pressure bar (SHPB) technique is used to determine the dynamic strength of reactive powder concretes (RPCs) with different steel-fiber contents. Two types of pulse shapers with different thicknesses are considered to reduce the high-frequency-oscillation effect and achieve a nearly constant strain rate over a certain deformation range. It is known that the compressive strength of concrete-like materials is hydrostatic-stress-dependent, and the apparent dynamic strength enhancement comes from both the effects of the hydrostatic stress and strain rate. In order to differentiate them, numerical method is used to calculate the contribution of the hydrostatic stress, and then the genuine strain-rate effect on dynamic compressive strength of RPCs is determined. In addition, the effect of steel-fibers on dynamic strength and failure mode of RPCs is discussed.
基金Funded by the National Natural Science Foundation of China(Nos.51478128,51278135 and 50708022)the Scientific and Research Developing Project of Ministry of Housing and Urban-Rural Development of China(2010-K3-27)+1 种基金the Guangzhou Government Higher Vocational Colleges&Schools Yang Cheng Scholar Funded Scheme(10A043G)the Foundation for Fostering the Scientific and Technical Innovation of Guangzhou University
文摘The impact behaviour of three types of reactive powder concretes (RPC) was studied using the split Hopkinson press bar (SHPB) testing method. These RPC were prepared with steel fiber volume fraction of 0%, 3%, and 4%, respectively. The stress-strain relationship, strain rate sensitivity threshold value, dynamic strength increase factor, modulus of elasticity and failure pattern of these RPC specimens subjected to impact load were investigated. From the tests, the strain rate sensitivity threshold value of 50 s-1 was obtained. The experimental results showed that when the strain rate increased from the threshold value to 95 s-1, the maximum stress of RPC increased by about 20% and the modulus of elasticity of RPC increased by about 30%. The failure pattern of RPC specimens with steel fiber reinforcement was very different from that of the RPC matrix specimen when subjected to impact loading. Under similar impact loading rate, cracks developed in the steel fiber reinforced RPC specimens, whilst the RPC matrix specimens were broken into small pieces.