In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confi ning pressure, two rocks are subjected to impact loadings with different strain rates and confi ning pres...In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confi ning pressure, two rocks are subjected to impact loadings with different strain rates and confi ning pressures by using split Hopkinson pressure bar equipment with a confi ning pressure device. Based on the experimental results, the stress-strain curves are analyzed and the effects of confi ning pressure and strain rates on the dynamic compressive strength, peak strain and failure mode are summarized. The results show that:(1) The characteristics of two rocks in the ascent stage of the stressstrain curve are basically the same, but in the descent stage, the rocks gradually show plastic deformation characteristics as the confi ning pressure increases.(2) The dynamic compressive strength and peak strain of two rocks increase as the strain rate increases and the confi ning pressure effects are obvious.(3) Due to the effect of confi ning pressure, the normal stress on the damage surface of the rock increases correspondingly, the bearing capacity of the crack friction exceeds the material cohesion and the slippage of the fractured rock is controlled, which all lead to the compression and shear failure mode of rock. The theoretical analysis and experimental methods to study the dynamic failure mode and other related characteristics of rock are useful in developing standards for engineering practice.展开更多
The mechanism of the shift of the band-gap in phononic crystal (PC) with different initial confining pressures is studied experimentally and numerically. The experimental results and numerical analysis simultaneousl...The mechanism of the shift of the band-gap in phononic crystal (PC) with different initial confining pressures is studied experimentally and numerically. The experimental results and numerical analysis simultaneously indicate that the confining pressure can efficiently tune the location in and the width of the band-gap. The present work provides a basis for tuning the band-gap of phononic crystal in engineering applications.展开更多
Split Hopkinson pressure bar (SHPB) has become a frequently used technique to measure the uniaxial compressive stress-strain relation of various engineering materials at high strain-rates. The accuracy of an SHPB test...Split Hopkinson pressure bar (SHPB) has become a frequently used technique to measure the uniaxial compressive stress-strain relation of various engineering materials at high strain-rates. The accuracy of an SHPB test is based on the assumption of uniaxial and uniform stress distribution within the specimen, which, however, is not always satisfied in an actual SHPB test due to the existence of some unavoidable negative factors, e.g., interface friction constrains. Kinetic interface friction tests based on a simple device for engineering materials testing on SHPB tests are performed. A kinetic interface friction model is proposed and validated by implementing it into a numerical model. It shows that the proposed simple device is sufficient to obtain kinetic interface friction results for common SHPB tests. The kinetic friction model should be used instead of the frequently used constant friction model for more accurate numerical simulation of SHPB tests.展开更多
The split Hopkinson pressure bar (SHPB) was used to determine the dynamic compressive strength of the high-strength Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass at strain rate on the order of 102 s^-1. It is shown t...The split Hopkinson pressure bar (SHPB) was used to determine the dynamic compressive strength of the high-strength Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass at strain rate on the order of 102 s^-1. It is shown that at high strain rates beyond about 1 000 s^-1, uniform deformation within the metallic glass specimen could not be achieved and dispersion in the transmitted pulse can lead to discrepancies in measuring the dynamic failure strength of the present Zr-based bulk metallic glass. Based on these reasons, a copper insert was placed between the strike bar and the input bar to obtain reliable and consistent experimental data for testing of the Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass using the SHPB. Negative strain rate sensitivity was found in the present Zr-based bulk metallic glass.展开更多
基金National Natural Science Foundation of China under Grant No.51378497
文摘In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confi ning pressure, two rocks are subjected to impact loadings with different strain rates and confi ning pressures by using split Hopkinson pressure bar equipment with a confi ning pressure device. Based on the experimental results, the stress-strain curves are analyzed and the effects of confi ning pressure and strain rates on the dynamic compressive strength, peak strain and failure mode are summarized. The results show that:(1) The characteristics of two rocks in the ascent stage of the stressstrain curve are basically the same, but in the descent stage, the rocks gradually show plastic deformation characteristics as the confi ning pressure increases.(2) The dynamic compressive strength and peak strain of two rocks increase as the strain rate increases and the confi ning pressure effects are obvious.(3) Due to the effect of confi ning pressure, the normal stress on the damage surface of the rock increases correspondingly, the bearing capacity of the crack friction exceeds the material cohesion and the slippage of the fractured rock is controlled, which all lead to the compression and shear failure mode of rock. The theoretical analysis and experimental methods to study the dynamic failure mode and other related characteristics of rock are useful in developing standards for engineering practice.
基金Project supported by the National Natural Science Foundation of China(Grant No.10732010,10972010,and 11028206)
文摘The mechanism of the shift of the band-gap in phononic crystal (PC) with different initial confining pressures is studied experimentally and numerically. The experimental results and numerical analysis simultaneously indicate that the confining pressure can efficiently tune the location in and the width of the band-gap. The present work provides a basis for tuning the band-gap of phononic crystal in engineering applications.
文摘Split Hopkinson pressure bar (SHPB) has become a frequently used technique to measure the uniaxial compressive stress-strain relation of various engineering materials at high strain-rates. The accuracy of an SHPB test is based on the assumption of uniaxial and uniform stress distribution within the specimen, which, however, is not always satisfied in an actual SHPB test due to the existence of some unavoidable negative factors, e.g., interface friction constrains. Kinetic interface friction tests based on a simple device for engineering materials testing on SHPB tests are performed. A kinetic interface friction model is proposed and validated by implementing it into a numerical model. It shows that the proposed simple device is sufficient to obtain kinetic interface friction results for common SHPB tests. The kinetic friction model should be used instead of the frequently used constant friction model for more accurate numerical simulation of SHPB tests.
基金Sponsored by the Ministerial Level Research Foundation (00J12 1 7 BQ0123)
文摘The split Hopkinson pressure bar (SHPB) was used to determine the dynamic compressive strength of the high-strength Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass at strain rate on the order of 102 s^-1. It is shown that at high strain rates beyond about 1 000 s^-1, uniform deformation within the metallic glass specimen could not be achieved and dispersion in the transmitted pulse can lead to discrepancies in measuring the dynamic failure strength of the present Zr-based bulk metallic glass. Based on these reasons, a copper insert was placed between the strike bar and the input bar to obtain reliable and consistent experimental data for testing of the Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass using the SHPB. Negative strain rate sensitivity was found in the present Zr-based bulk metallic glass.