期刊文献+
共找到5,112篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of process parameters on the morphology of aluminum/copper alloy lap joints by red and blue hybrid laser welding
1
作者 宋曜祥 肖梦智 +4 位作者 黄德才 张瑞华 尹燕 茹恩光 吴怡霖 《China Welding》 CAS 2024年第2期23-30,共8页
In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduce... In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduced for welding.T2 copper and 6063 aluminum thin plates were lap welded by coaxial dual-beam laser welding.The morphology of weld cross section was compared to explore the influence of process parameters on the formation of lap joints.The microstructure characteristics of the weld zone were observed and compared by optical microscope.The results show that the addition of laser beam swing can eliminate the internal pores of the weld.With the increase of the swing width,the weld depth decreases,and the weld width increases first and then decreases.The influence of welding speed on the weld cross section morphology is similar to that of swing width.With the increase of welding speed,the weld width increases first and then decreases,while the weld depth decreases all the time.This is because that the red laser is used as the main heat source to melt the base metals,with the increase of red laser power,the weld depth increases.As an auxiliary laser source,blue laser reduces the total energy consumption,consequently,the effective heat input increases and the spatter is restrained effectively.As a result,the increase of red laser power has an enhancement effect on the weld width and weld depth.When the swing width is 1.2 mm,the red laser power is 550 W,the blue laser power is 500 W,and the welding speed is 35 mm/s,the weld forming is the best.The lap joint of T2 copper and 6063 aluminum alloy thin plate can be connected stably with the hybrid of blue laser.The effect rules of laser beam swing on the weld formation were obtained,which improved the quality of the joints. 展开更多
关键词 laser welding aluminum/copper alloy dual beam process parameters weld morphology
下载PDF
High efficiency GHz laser processing with long bursts
2
作者 Eric Audouard Eric Mottay 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期202-210,共9页
Bursts of GHz repetition rate pulses involve more ablation mechanisms than single femtosecond pulses.Efficient ablation by GHz laser pulses is a multi-step process,consisting of a first thermal incubation phase,follow... Bursts of GHz repetition rate pulses involve more ablation mechanisms than single femtosecond pulses.Efficient ablation by GHz laser pulses is a multi-step process,consisting of a first thermal incubation phase,followed by a highly efficient ablation phase.GHz ablation therefore combines thermal and non-thermal ablation mechanisms.With an optimal choice of the burst duration,the ablation efficiency can be highly enhanced.Long bursts,comprising tens of pulses to hundreds of pulses,are needed to take full advantage of the increase in ablation efficiency. 展开更多
关键词 femtosecond laser temporal pulses shaping GHz bursts femtosecond processing
下载PDF
Mechanical Properties and Microstructure of Bionic Non-Smooth Stainless Steel Surface by Laser Multiple Processing 被引量:7
3
作者 Jin-zhong Lu~(1,2) ,Chao-jun Yang~(1,2) ,Lei Zhang~(1,2),Ai-xin Feng ~(1,2) ,Yin-fang Jiang~(1,2)1.School of Mechanical Engineering,Jiangsu University,Zhenjiang 212013,P.R.China2.Jiangsu Provincial Key Laboratory for Science and Technology of Photon Manufacturing,Zhenjiang 212013,P.R.China 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第2期180-185,共6页
Laser multiple processing, i.e. laser surface texturing and then Laser Shock Processing (LSP), is a new surface processing technology for the preparation of bionic non-smooth surfaces. Based on engineering bionics, sa... Laser multiple processing, i.e. laser surface texturing and then Laser Shock Processing (LSP), is a new surface processing technology for the preparation of bionic non-smooth surfaces. Based on engineering bionics, samples of bionic non-smooth surfaces of stainless steel 0Crl 8Ni9 were manufactured in the form of reseau structure by laser multiple processing. The mechanical properties (including microhardness, residual stress, surface roughness) and microstructure of the samples treated by laser multiple processing were compared with those of the samples without LSP The results show that the mechanical properties of these samples by laser multiple processing were clearly improved in comparison with those of the samples without LSP The mechanisms underlying the improved surface microhardness and surface residual stress were analyzed, and the relations between hardness, comnressive residual stress and roughness were also presented. 展开更多
关键词 laser multiple processing laser surface texturing laser shock processing stainless steel 0Cr18Ni9 MICROHARDNESS residual stress roughness
下载PDF
Effects of Laser Shock Processing on Mechanical Properties of Laser Welded ANSI 304 Stainless Steel Joint 被引量:11
4
作者 ZHANG Yongkang ZHANG Lei +4 位作者 LUO Kaiyu SUN Guifang LU Jinzhong DAI Fengze ZHONG Junwei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第2期285-292,共8页
With the rapid development of engineering component with integration,high-speed and multi-parameter,traditional techniques haven't met practical needs in extreme service environment.Laser welding,a new welding techno... With the rapid development of engineering component with integration,high-speed and multi-parameter,traditional techniques haven't met practical needs in extreme service environment.Laser welding,a new welding technology,has been widely used.However,it would generate the drop of mechanical properties for laser welded joint due to its thermal effect.Laser shock processing(LSP) is one of the most effective methods to improve the mechanical properties of laser welded ANSI 304 stainless steel joint.In this paper,the effects of LSP on the mechanical properties of laser welded ANSI 304 stainless steel joint have been investigated.The welded joint on the front of the tensile samples is treated by LSP impacts,and the overlapping rate of the laser spot is 50%.The tensile test of the laser welded joint with and without LSP impacts is carried out,and the fracture morphology of the tensile samples is analyzed by scanning electron microscope(SEM).Compared with the yield strength of 11.70 kN,the tensile strength of 37.66 kN,the yield-to-tensile strength ratio of 0.310 7,the elongation of 25.20%,the area reduction of 32.68% and the elastic modulus of 13 063.876 MPa,the corresponding values after LSP impacts are 14.25 kN,38.74 kN,0.367 8,26.58%,42.29% and 14 754.394 MPa,respectively.Through LSP impacts,the increasing ratio of the yield strength and tensile strength are 121.79% and 102.87%,respectively;the elongation and area reduction are improved by 5.48% and 29.38%,respectively.By comparing with coarse fracture surface of the welded joint,the delamination splitting with some cracks in the sharp corner of the welded joint and asymmetric dimples,LSP can cause brighter fracture surface,and finer and more uniform dimples.Finally,the schematic illustration of dimple formation with LSP is clearly described.The proposed research ensures that the LSP technology can clearly improve the yield strength,tensile strength,yield-to-tensile strength ratio,elongation,area reduction and elastic modulus of the welded joint.The enhancement mechanism of LSP on laser welded ANSI 304 stainless steel joint is mainly due to the fact that the refined and uniform dimples effectively delay the fracture of laser welded joints. 展开更多
关键词 laser shock processing(LSP) laser welding ANSI 304 stainless steel mechanical property facture morphology
下载PDF
Ultra-Short Pulsed Laser Manufacturing and Surface Processing of Microdevices 被引量:4
5
作者 Yongchao Yu Shi Bai +1 位作者 Shutong Wang Anming Hu 《Engineering》 SCIE EI 2018年第6期779-786,共8页
Ultra-short laser pulses possess many advantages for materials processing.Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point;therefore,it is a promising tool for micro-and ... Ultra-short laser pulses possess many advantages for materials processing.Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point;therefore,it is a promising tool for micro-and submicro-sized precision processing.In addition,the nonlinear multiphoton absorption phenomenon of focused ultra-short pulses provides a promising method for the fabrication of various structures on transparent material,such as glass and transparent polymers.A laser direct writing process was applied in the fabrication of high-performance three-dimensional(3D)structured multilayer microsupercapacitors(MSCs)on polymer substrates exhibiting a peak specific capacitance of 42.6 mF·cm^-2 at a current density of 0.1 mA·cm^-12.Furthermore,a flexible smart sensor array on a polymer substrate was fabricated for multi-flavor detection.Different surface treatments such as gold plating,reducedgraphene oxide(rGO)coating,and polyaniline(PANI)coating were accomplished for different measurement units.By applying principal component analysis(PCA),this sensing system showed a promising result for flavor detection.In addition,two-dimensional(2D)periodic metal nanostructures inside 3D glass microfluidic channels were developed by all-femtosecond-laser processing for real-time surfaceenhanced Raman spectroscopy(SERS).The processing mechanisms included laser ablation,laser reduction,and laser-induced surface nano-engineering.These works demonstrate the attractive potential of ultra-short pulsed laser for surface precision manufacturing. 展开更多
关键词 Ultra-short PULSED laser processing MICRODEVICES SUPERCAPACITOR Electronic TONGUE Surface-enhanced RAMAN spectroscopy
下载PDF
Tailoring metallic surface properties induced by laser surface processing for industrial applications 被引量:1
6
作者 Guoqing Hu Yang Song Yingchun Guan 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2019年第1期29-34,共6页
As a simple, reproducible, and pollution-free technique with the potential of integration and automation, laser processing has attracted increasing attention. Laser processing, which includes laser polishing, laser cl... As a simple, reproducible, and pollution-free technique with the potential of integration and automation, laser processing has attracted increasing attention. Laser processing, which includes laser polishing, laser cleaning,and fabrication of laser-induced micro-/nano-structures, has been demonstrated to yield smooth, clean, functional surfaces and effective joining. Laser polishing is an advanced, highly efficient, and ecofriendly polishing technology. This study demonstrated the laser polishing of a selective laser-melted Inconel 718(IN718) superalloy and a titanium alloy sample. The surface roughnesses Raand Rzof the IN718 superalloy were respectively reduced from 8 and 33 μm to 0.2 and 0.8 μm, and the Raof the titanium alloy was reduced from 9.8 μm to 0.2 μm.Moreover, the wear resistance and corrosion resistance of the IN718 were apparently improved. As another surface-related processing method, laser cleaning was used to clean terminal blocks. Almost all the contaminants were removed, as verified by the absence of their chemical compositions and the decreased surface roughness. In addition, a superhydrophobic surface with a contact angle of over 160° and sliding angle of b8° on stainless steel was obtained by laser texturing treatment. These results demonstrate the high potential of laser processing in the scientific, technological, and industrial fields. 展开更多
关键词 laser processing laser POLISHING laser CLEANING SUPERHYDROPHOBICITY
下载PDF
Omnidirectional iridescence via cylindricallypolarized femtosecond laser processing 被引量:16
7
作者 Nikolaos Livakas Evangelos Skoulas Emmanuel Stratakis 《Opto-Electronic Advances》 2020年第5期11-18,共8页
We report the femtosecond(fs)laser fabrication of biomimetic omnidirectional iridescent metallic surfaces exhibiting efficient diffraction for practically any angle of light incidence.Such diffractive behavior is real... We report the femtosecond(fs)laser fabrication of biomimetic omnidirectional iridescent metallic surfaces exhibiting efficient diffraction for practically any angle of light incidence.Such diffractive behavior is realized by means of multi-directional low-spatial-frequency,laser-induced periodic surface structures(LSFL)formed upon exploiting the cylindrical symmetry of a cylindrical vector(CV)fs field.We particularly demonstrate that the multi-directional gratings formed on stainless steel surface by a radially polarized fs beam,could mimic the omnidirectional structural coloration properties found in some natural species.Accordingly,the fabricated grating structures can spatially disperse the incident light into individual wavelength with high efficiency,exhibiting structural iridescence at all viewing angles.Analytical calculations using the grating equation reproduced the characteristic variation of the vivid colors observed as a function of incident angle.We envisage that our results will significantly contribute to the development of new photonic and light sensing devices. 展开更多
关键词 laser processing structural colors radial polarisation
下载PDF
Acquisition and processing of coaxial image of molten pool and keyhole in Nd:YAG laser welding with high power 被引量:2
8
作者 秦国梁 齐秀滨 +2 位作者 杨永波 王旭友 林尚扬 《China Welding》 EI CAS 2004年第1期51-55,共5页
An experimental setup of acquiring the coaxial visual image of the molten pool and keyhole in high power Nd:YAG laser welding is introduced in this paper. It is one of the most difficult problems in acquiring coaxial ... An experimental setup of acquiring the coaxial visual image of the molten pool and keyhole in high power Nd:YAG laser welding is introduced in this paper. It is one of the most difficult problems in acquiring coaxial image that the coaxial imaging signal of molten pool and keyhole must be separated from the laser beam with high power. This problem was resolved by designing a dichroitic spectroscope. The characteristics of imaging signal were analyzed and the coaxial image of molten pool and keyhole was acquired. A smoothing filter and a homomorphic filter were designed to remove the low frequency noise and to enhance the image according to the characteristics of imaging signal. At last, edges of molten pool and keyhole were detected and extracted based on image segmentation with threshold. 展开更多
关键词 laser welding molten pool KEYHOLE coaxial visual image image processing
下载PDF
Study of image processing for V-shape groove and robotic weld seam tracking based on laser vision 被引量:2
9
作者 肖心远 石永华 +1 位作者 王国荣 李鹤喜 《China Welding》 EI CAS 2008年第4期68-73,共6页
Single-stripe laser was applied to acquire V-shape groove contour information. Most of arc light and splash noise was removed and stripe laser image was kept by wavelet transform. Half-threshold algorithm was used for... Single-stripe laser was applied to acquire V-shape groove contour information. Most of arc light and splash noise was removed and stripe laser image was kept by wavelet transform. Half-threshold algorithm was used for image segmentation and stripe laser image was gotten after refining. Weld seam center position was identified and extracted by extreme curvature corner detection method. The location of torch was detected to accord the frequency of computer program with robot program and serial communication program. The tracking experiments of sidelong, reflex and curve weld line show that the system can meet the demand of the tracking precision under normal welding conditions. 展开更多
关键词 laser vision wavelet transform image processing weld seam tracking
下载PDF
Numerical simulation of residual stress field induced by laser shock processing with square spot 被引量:2
10
作者 曹子文 车志刚 +1 位作者 邹世坤 费群星 《Journal of Shanghai University(English Edition)》 CAS 2011年第6期553-556,共4页
Laser shock processing(LSP),also known as laser peening,is a novel surface treatment technique in the past few years.Compressive residual stresses which imparted by LSP are very important for improving fatigue,corro... Laser shock processing(LSP),also known as laser peening,is a novel surface treatment technique in the past few years.Compressive residual stresses which imparted by LSP are very important for improving fatigue,corrosion and wea rresistance of metals.Finite element analysis(FEA) simulation using ABAQUS software has been applied to predict residualstresses induced by LSP on Ti-6Al-4V titanium alloy with laser pulse duration 30 ns and water confined ablation mode.The residual stress field generated by different shape laser spots was studied,and the square laser spot is shown the most suitability for avoiding stress lack phenomenon and overlapping LSP.Surface residual stresses and plastically affected depth within single square spot both increased with the increase of laser intensity and laser shock times.Furthermore,compared with circle and ellipse spot,the residual stress distribution in overlapping square spots is very uniform only with small overlapping ratio.LSP with square spot can process advantageous residual stress field,and this technique will be used widely. 展开更多
关键词 laser shock processing square spot TI-6AL-4V residual stress
下载PDF
VIRTUAL PROCESSING OF LASER SURFACE HARDENING ON AUTOBODY DIES 被引量:2
11
作者 ZHANG Taohong YU Gang +1 位作者 WANG Jianlun LIU Xiangyang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期268-271,共4页
A new method of collision-free path plan integrated in virtual processing is developed to improve the efficiency of laser surface hardening on dies. The path plan is based on the premise of no collision and the optimi... A new method of collision-free path plan integrated in virtual processing is developed to improve the efficiency of laser surface hardening on dies. The path plan is based on the premise of no collision and the optimization object is the shortest path. The optimization model of collision-free path is built from traveling salesman problem (TSP). Collision-free path between two machining points is calculated in configuration space (C-Space). Ant colony optimization (ACO) algorithm is applied to TSP of all the machining points to find the shortest path, which is simulated in virtual environment set up by IGRIP software. Virtual machining time, no-collision report, etc, are put out atter the simulation. An example on autobody die is processed in the virtual platform, the simulation results display that ACO has perfect optimization effect, and the method of virtual processing with integration of collision-free optimal path is practical. 展开更多
关键词 laser surface transformation hardening Virtual processing Traveling salesman problem(TSP) Ant colony optimization(ACO)
下载PDF
Impressive strides in amelioration of corrosion behavior of Mg-based alloys through the PEO process combined with surface laser process: A review
12
作者 Arash Fattah-alhosseini Razieh Chaharmahali 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4390-4406,共17页
The unsatisfactory corrosion properties of Mg-based alloys pose a significant obstacle to their widespread application. Plasma electrolytic oxidation(PEO) is a prevalent and effective coating method that produces a ce... The unsatisfactory corrosion properties of Mg-based alloys pose a significant obstacle to their widespread application. Plasma electrolytic oxidation(PEO) is a prevalent and effective coating method that produces a ceramic-like oxide coating on the surface of Mg-based alloys,enhancing their resistance to corrosion. Research has demonstrated that PEO treatment can substantially improve the corrosion performance of alloys based on magnesium in the short term. In an effort to enhance the corrosion resistance of PEO coatings over an extended period of time, researchers have turned their attention to the use of laser processes as both pre-and post-treatments in conjunction with the PEO process. Various laser processes, such as laser shock melting(LSM), laser shock adhesion(LSA), laser shock texturing(LST), and laser shock peening(LSP), have been investigated for their potential to improve PEO coatings on Mg substrates and their alloys. These laser melting processes can homogenize and alter the microstructure of Mg-based alloys while leaving the bulk material unchanged, thereby modifying the substrate surface. However, the porous and rough structure of PEO coatings, with their open and interconnected pore structure, can reduce their long-term corrosion resistance. As such, various laser processes are well-suited for surface modification of these coatings. This study will first examine the PEO process and the various types of laser processes used in this process, before investigating the corrosion behavior of PEO coatings in conjunction with laser pre-and post-treatment processes. 展开更多
关键词 Mg and its alloy laser surface texturing Corrosion behavior PEO process
下载PDF
Laser Shock Processing of an Austenitic Stainless Steel and a Nickel-base Superalloy 被引量:1
13
作者 Huaming WANG, Xijun SUN and Xiaoxuan LILaboratory of Laser Materials Processing and Surface Engineering, School of Materials Science and Engineering, Beihang University (formerly Beijing University of Aeronautics and Astronautics), Beijing 100083, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第5期402-404,共3页
An austenitic stainless steel 1Cr18Ni9Ti and a solid solution-strengthened Ni-base superalloy GH30 were shock processed using a Q-switched pulsed Nd-glass laser. Microstructure, hardness and residual stress of the las... An austenitic stainless steel 1Cr18Ni9Ti and a solid solution-strengthened Ni-base superalloy GH30 were shock processed using a Q-switched pulsed Nd-glass laser. Microstructure, hardness and residual stress of the laser shock processed surface were investigated as functions of laser processing parameters. Results show that high density of dislocations and fine deformation twins are produced in the laser shock processed surface layers in both the austenitic stainless steel and the nickel-base superalloy. Extensive strain-induced martensite was also observed in the laser shock processed zone of the austenitic steel. The hardness of the laser shock processed surface was significantly enhanced and compressive stress as high as 400 MPa was produced in the laser shock processed surface. 展开更多
关键词 laser shock processing Austenitic stainless steel Nickel-base superalloy Surface mechanical properties Residual stress
下载PDF
Low-cycle Fatigue Behavior of Ni-based Superalloy GH586 with Laser Shock Processing 被引量:3
14
作者 曹将栋 ZHANG Junsong +3 位作者 花银群 RONG Zhen CHEN Ruifang YE Yunxia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1186-1192,共7页
Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing(LSP) was investigated. The residual stress of the specimens treated with LSP was assessed by X-ray diffraction method. The microstr... Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing(LSP) was investigated. The residual stress of the specimens treated with LSP was assessed by X-ray diffraction method. The microstructure and fracture morphology were characterized by using an optical microscope(OM), a scanning electron microscope(SEM), and a transmission electron microscope(TEM). The results indicated that the maximum residual compressive stress was at about 1 mm from the shocking spot center, where the residual compressive stress was slightly lower. High density tangling dislocations, dislocation walls, and dislocation cells in the microstructure of the specimens treated with LSP effectively prevented fatigue cracks propagation. The fatigue life was roughly twice as long as that of the specimens without LSP. The fatigue crack initiation(FCI) in specimens treated with LSP was observed in the lateral section and the subsurface simultaneously. The fatigue striation in the fracture treated with LSP was narrower than that in the untreated specimens. Moreover, dimples with tear ridges were found in the fatigued zones of the LSP treated specimens, which would be caused by severe plastic deformation. 展开更多
关键词 laser shock processing Ni-based superalloy fatigue fracture microstructure
下载PDF
Study on the image processing of laser vision seam tracking system 被引量:1
15
作者 申俊琦 胡绳荪 +1 位作者 冯胜强 朱莉娜 《China Welding》 EI CAS 2010年第2期47-50,共4页
Seam image processing is the basis of the realization of automatic laser vision seam tracking system, and it has become one of the important research directions. Adding windows processing, gray processing, fast median... Seam image processing is the basis of the realization of automatic laser vision seam tracking system, and it has become one of the important research directions. Adding windows processing, gray processing, fast median filtering, binary processing and image edge extraction are used to pretreat the seam image. In the post-processing of seam image, the feature points of the target image are succesfully detected by using center line extraction and feature points detection algorithm based on slope analysis. The whole processing time is less than 150 ms, and the real-time processing of seam image can be implemented. 展开更多
关键词 image processing seam tracking laser vision feature points detection
下载PDF
Hybrid femtosecond laser three-dimensional micro-and nanoprocessing:a review 被引量:6
16
作者 Koji Sugioka 《International Journal of Extreme Manufacturing》 2019年第1期52-63,共12页
The extremely high peak intensity associated with ultrashort pulse width of femtosecond(fs)lasers enabled inducing nonlinear multiphoton absorption in materials that are transparent to the laser wavelength.More import... The extremely high peak intensity associated with ultrashort pulse width of femtosecond(fs)lasers enabled inducing nonlinear multiphoton absorption in materials that are transparent to the laser wavelength.More importantly,focusing the fs laser beam inside the transparent materials confined the nonlinear interaction to within the focal volume only,realizing three-dimensional(3D)micro/nanofabrication.This 3D capability offers three different processing schemes for use in fabrication:undeformative,subtractive,and additive.Furthermore,a hybrid approach of different schemes can create much more complex 3D structures and thereby promises to enhance the functionality of the structures created.Thus,hybrid fs laser 3D microprocessing opens a new door for material processing.This paper comprehensively reviews different types of hybrid fs laser 3D micro/nanoprocessing for diverse applications including fabrication of functional micro/nanodevices. 展开更多
关键词 femtosecond laser 3D processing hybrid processing MICRODEVICE NANODEVICE
下载PDF
Investigation of the Laser Powder Bed Fusion Process of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy
17
作者 Changchun Zhang Tingting Liu +2 位作者 Wenhe Liao Huiliang Wei Ling Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期78-90,共13页
Laser powder bed fusion(LPBF)is an advanced manufacturing technology;however,inappropriate LPBF process parameters may cause printing defects in materials.In the present work,the LPBF process of Ti-6.5Al-3.5Mo-1.5Zr-0... Laser powder bed fusion(LPBF)is an advanced manufacturing technology;however,inappropriate LPBF process parameters may cause printing defects in materials.In the present work,the LPBF process of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy was investigated by a two-step optimization approach.Subsequently,heat transfer and liquid flow behaviors during LPBF were simulated by a well-tested phenomenological model,and the defect formation mechanisms in the as-fabricated alloy were discussed.The optimized process parameters for LPBF were detected as laser power changed from 195 W to 210 W,with scanning speed of 1250 mm/s.The LPBF process was divided into a laser irradiation stage,a spreading flow stage,and a solidification stage.The morphologies and defects of deposited tracks were affected by liquid flow behavior caused by rapid cooling rates.The findings of this research can provide valuable support for printing defect-free metal components. 展开更多
关键词 laser powder bed fusion Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy process parameters Heat transfer and liquid flow Defects
下载PDF
Processing of Laser Scanner Data and Extraction of Structure Lines Using Methods of the Image Processing 被引量:21
18
作者 SUILi-chun 《测绘学报》 EI CSCD 北大核心 2004年第1期63-70,共8页
激光扫描数据提供了一种新的手段用于获取高精度的数字地形表面模型。原始的航空激光扫描数据表达的是一些非规则分布的“点云” ,这些非规则分布的点需要进行有效的事后处理。这种事后处理有 2个目的 :一是将那些分布在地表面上的点 (... 激光扫描数据提供了一种新的手段用于获取高精度的数字地形表面模型。原始的航空激光扫描数据表达的是一些非规则分布的“点云” ,这些非规则分布的点需要进行有效的事后处理。这种事后处理有 2个目的 :一是将那些分布在地表面上的点 (即地面点 )与分布在非地表面上的点 (譬如树木、房屋或汽车上的点 ,即非地面点 )进行有效的分离 ;二是从分离后的地面点中提取结构线 ,用于建立高精度的数字地面模型。作者发展了一系列的基于数字形态学理论和稳健参数估计理论的方法用于分离和探测地面点。这里所介绍和开发的提取结构线的算法建立在数字图像处理和表面曲率理论的基础上。这些算法同样可以扩展地用于其他领域。所介绍的基于数字图像处理理论处理原始的航空激光扫瞄数据和提取结构线的方法取得了很好的结果。 展开更多
关键词 激光扫描 数学形态学 稳健估计 数字图像处理 结构线提取
下载PDF
Improvements of Traditional Laser Fraunhofer Diffraction Experiment Using Digital Image Processing Method 被引量:1
19
作者 金远伟 王娅冰 +2 位作者 赵斌 伊兆广 许生慧 《Journal of Donghua University(English Edition)》 EI CAS 2020年第5期406-410,共5页
We present an improved digital image processing(DIP)method to calculate the widths of single slits.Different from the traditional laser Fraunhofer diffraction experiment in college physical experiments,by performing f... We present an improved digital image processing(DIP)method to calculate the widths of single slits.Different from the traditional laser Fraunhofer diffraction experiment in college physical experiments,by performing fast Fourier transform,inverse fast Fourier transform and the nonlinear leastsquare fitting on the diffraction pattern taken by a camera,the DIP method can quickly return an analytic expression,whose period is used to calculate widths of single slits.By comparing the measured results by the DIP method and the successional difference(SD)method,we find that for a single slit whose width is 60372μm,the DIP method is more accurate.Experimental results show that for single slits with widths between 40μm and 160μm,the relative error of the DIP method is less than 2.78%.Also,the DIP method can be used to measure the diameter of filament and fibres online in real time. 展开更多
关键词 digital image processing method traditional laser Fraunhofer diffraction experiment width of single slit
下载PDF
Influence of layer thickness on formation quality,microstructure,mechanical properties,and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion
20
作者 Bangzhao Yin Jinge Liu +7 位作者 Bo Peng Mengran Zhou Bingchuan Liu Xiaolin Ma Caimei Wang Peng Wen Yun Tian Yufeng Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1367-1385,共19页
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not... Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases. 展开更多
关键词 Magnesium alloy WE43 laser powder bed fusion Layer thickness process optimization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部