The effects of cavity dimensions on the resonance frequency and resonance strength of the TE01δmode in split postdielectric resonator (SPDR) technique are investigated by using full-wave simulations. The results of s...The effects of cavity dimensions on the resonance frequency and resonance strength of the TE01δmode in split postdielectric resonator (SPDR) technique are investigated by using full-wave simulations. The results of simulations provide guidance for adjusting the dimensional parameters of the set-up to ensure that a strong TE01δ resonance mode is excited. The scaled designs of SPDR fixtures for operation at frequencies that are most important for applications are presented. These designs employ two sets of dielectric resonators (DRs) that can be fabricated from the standard ceramic materials. In addition, it is demonstrated that the resonance frequency of the TE01δ mode in the fixture can be tuned by adjusting the gap of the split DR.展开更多
Dielectric resonator magnetoelectric dipole(DRMED)arrays with enhanced isolation,reduced cross-polarization,and backward radiation are proposed for base station(BS)applications.The proposed antenna comprises an elevat...Dielectric resonator magnetoelectric dipole(DRMED)arrays with enhanced isolation,reduced cross-polarization,and backward radiation are proposed for base station(BS)applications.The proposed antenna comprises an elevated dielectric resonator antenna(DRA)on a small metal plate above a sizeable common ground plane.The DRA is designed in its T Eδ11 mode,acting like a magnetic dipole.The surface current excited by the differential probes flowing on the small ground plane is equivalent to an electric dipole.Since these two equivalent dipoles are orthogonal,they have the magnetoelectric dipole characteristics with reduced backward radiation.Meanwhile,the small ground planes can be treated as decoupling structures to provide a neutralization path to cancel the original coupling path.A linearly-polarized 4-element prototype array was verified experimentally in previous work.Here,a dual-polarized DRMED antenna is presented to construct a 2-element and 4×4 array for BS applications.To investigate its MIMO performance,sophisticated multi-cell scenario simulations are carried out.By using the proposed dualpolarized DRMED array,the cellular system capacityis improved by 118.6%compared to a conventional DRA array.This significant MIMO system improvement is mainly due to the reduced backward radiation and,therefore,reduced inter-cell interferences.Measurements align well with the simulations.展开更多
This paper presents an overview of dielectric patch(DP)antennas developed in recent years.The employed DP resonator composed of a DP and a bottom substrate is analyzed comprehensively here,enabling the easy realizatio...This paper presents an overview of dielectric patch(DP)antennas developed in recent years.The employed DP resonator composed of a DP and a bottom substrate is analyzed comprehensively here,enabling the easy realization of a quasi-planar DP antenna.It combines the dual advantages of the conventional microstrip patch(MP)antenna and dielectric resonator(DR)antenna in terms of profile,gain,bandwidth,radiation efficiency,and design freedom.Furthermore,the DP antenna inherits the multi-mode characteristic of the DR antenna,thus it has a large number of high-order modes,including TMmn mode and TEmn mode.The high-order modes are widely applied,for example,by combining with the dominant TM10 mode to expand the bandwidth,or selecting multiple higher-order modes to implement a high-gain antenna.Additionally,the non-radiation high-order modes are also utilized to produce natural radiation null in filtering antenna design.In this paper,the design theories and techniques of DP antenna are introduced and investigated,including calculation and control methods of the resonant mode frequencies,analysis of the radiation mechanism,and applications of the multi-mode characteristic.This overview could provide guidance for the subsequent antenna design,thus effectively avoid time-consuming optimization.展开更多
This paper proposes a new dielectric resonator antenna(DRA)design that can generate circularly polarized(CP)triple-band signals.Atripleband CP DRA antenna fed by a probe feed system is achieved with metal strips struc...This paper proposes a new dielectric resonator antenna(DRA)design that can generate circularly polarized(CP)triple-band signals.Atripleband CP DRA antenna fed by a probe feed system is achieved with metal strips structure on side of DRA structure.The design start with conventional rectangular DRA with F shaped metal strips on DRA structure alongside the feed.Then,the F metal strip is enhanced by extending the length of the metal strip to obtain wider impedance bandwidth.Further improvement on the antenna performance is observed by improvised the conventional DRA structure.The method of removing part of DRA bottom resulted to higher antenna gain with triple band CP.The primary features of the proposed DRA include wide impedance matching bandwidth(BW)and broadband circular polarization(CP).The primary features of the proposedDRAinclude wide impedance matching bandwidth(BW)and broadband circular polarization(CP).The CP BW values recorded by the proposed antenna were∼11.27%(3.3–3.65 GHz),12.18%(4.17–4.69 GHz),and 1.74%(6.44–6.55 GHz)for impedance-matching BW values of 35.4%(3.3–4.69 GHz),1.74%(5.36–5.44 GHz),and 1.85%(6.41–6.55 GHz)with peak gains of 6.8 dBic,7.6 dBic,and 8.5 dBic,respectively,in the lower,central,and upper bands.The prototype of the proposed antenna geometry was fabricated and measured.A good agreement was noted between the simulated and the measured results.展开更多
In this paper, a low-profile wideband dielectric resonator antenna(DRA) with a very compact planar size is investigated. The antenna consists of a high permittivity dielectric sheet on the top, a low permittivity subs...In this paper, a low-profile wideband dielectric resonator antenna(DRA) with a very compact planar size is investigated. The antenna consists of a high permittivity dielectric sheet on the top, a low permittivity substrate in the middle, and a probe feeding structure at the bottom. By digging an annular slot in the designated area of the square dielectric sheet, the resonant frequency of fundamental TE111 mode can be effectively increased to be close to the high-order TE131 mode. The two modes can be finally merged together, yielding a wide impedance bandwidth of16.6%. Most importantly, the combination of the two modes is done on the premise of a fixed antenna planar size, which can be very compact and suitable for beam-scanning applications. A probe feeding structure is used to excite the DRA, making the antenna simple and practical to be integrated with other RF circuits. For verification, antenna prototypes with singlefeed linear polarization and differential-feed dual polarization were fabricated and measured. Reasonable agreement between the measured and simulated results is observed.展开更多
This article presents a technical review of circularly polarized(CP) dielectric resonator antennas(DRA) for wideband applications.The primary objective of this review is,to highlight the techniques used by different r...This article presents a technical review of circularly polarized(CP) dielectric resonator antennas(DRA) for wideband applications.The primary objective of this review is,to highlight the techniques used by different researchers for generating circular polarization in DRA.First,a general idea of circular polarization and it advantages over linear polarization is presented,and then all the major developments made in the CP DRA are highlighted.The emphasis of the paper is on the wideband circularly polarized dielectric resonator antenna.The current state of the art and all the realizable features of the CP DRA are addressed comprehensively.Finally,some recommendations for future CP DRAs are given and the paper ends with concluding remarks.展开更多
In this article an ultra-wideband rectangular Dielectric Resonator Antenna is designed for millimeter wave 5G frequency band applications.Indoor 5G communications require antenna system with wide bandwidth and high ef...In this article an ultra-wideband rectangular Dielectric Resonator Antenna is designed for millimeter wave 5G frequency band applications.Indoor 5G communications require antenna system with wide bandwidth and high efficiency to enhance the throughput in the channel.To fulfill such requirements a Dielectric Resonator Antenna(DRA)is designed here which has achieved an ultra-wide bandwidth of 20.15%(22.32–27.56 GHz)which is 5.24 GHz of bandwidth centered at 26 GHz as resonating frequency.This covers the complete band 30(24.3–27.5 GHz)of 5G spectrum.26 and 28 GHz are considered as most popular frequencies in millimeter wave 5G communications.The aperture fed DRA designed here has also achieved an efficiency of 96 percentage with maximum radiation in the broadside direction(Phi=0,Theta=0).The measured gain of the DRA is 6.3 dB.The DRA designed here has dimensions of 0.25λ0×0.22λ0×0.12λ0.under the characteristic’s mode.The DRA is placed over a substrate with dimensions 0.5λ0×0.5λ0×0.02λ0.A cross slot aperture has been made on the ground plane which is placed above to the substrate.Here a full ground plane is used to resonate the antenna and is of similar dimension to the substrate.A microstrip line with two concentric rings makes an annular feed structure is used to excite the DRA and is placed below the substrate.The DRA is excited here in characteristics mode TE1Y1 and is the only mode of excitation.The DRA is linearly polarized,and the characteristic mode of excitation is maintained with 50 Ohm input impedance of the antenna.The DRA also gives here a good difference between the co-pol and cross pol approximately 15 to 20 dB.This antenna is more suitable for 5G indoor applications in millimeter wave frequency band centered at 26 GHz.展开更多
The broadband, narrow width, rectangular dielectric resonator antenna(RDRA) of aluminum nitride(εr=8.6) was designed and the effect of inclusion of air gap at the bottom of the dielectric resonator antenna(DRA),above...The broadband, narrow width, rectangular dielectric resonator antenna(RDRA) of aluminum nitride(εr=8.6) was designed and the effect of inclusion of air gap at the bottom of the dielectric resonator antenna(DRA),above the ground plane, was investigated. Gain around 7 dBi was obtained for DRA with air gap(DRAAG) over a broad bandwidth in upper X, Ku, and K bands. Further enhancement in gain could be obtained by placing a metal wall parallel to the length of DRA. However, due to the presence of metal wall, bandwidth was reduced. These structures with the metal wall are capable of operating over a wide band extending from Ku band to lower K band with the gain of around 10 dBi. CST Microwave Studio Software was used to simulate all these structures.Performance parameters of DRA with air gap were compared with several broadband DRA structures reported in recent literature. The proposed DRAAG with the metal wall in this paper is capable of operating over a wide bandwidth along with a significant gain.展开更多
Nowadays, the high-critical-temperature radio frequency superconducting quantum interference device (high-Tc rf SQUID) is usually coupled to a dielectric resonator that is a standard 10× 10×1 mm^3 SrTiO3 ...Nowadays, the high-critical-temperature radio frequency superconducting quantum interference device (high-Tc rf SQUID) is usually coupled to a dielectric resonator that is a standard 10× 10×1 mm^3 SrTiO3 (STO) substrate with a YBa2Cu3O7-δ (YBCO) thin-film flux focuser deposited on it. Recently, we have simulated a dielectric resonator for the high-Tc rf SQUID by using the ANSOFT High Frequency Structure Simulator (ANSOFT HFSS). We simulate the resonant frequency and the quality factor of our dielectric resonator when it is unloaded or matches a 50-Ω impedance. The simulation results are quite close to the practical measurements. Our study shows that ANSOFT HFSS is quite suitable for simulating the dielectric resonator used for the high-Tc rf SQUID. Therefore, we think the ANSOFT HFSS can be very helpful for investigating the characteristics of dielectric resonators for high-Tc rf SQUIDs.展开更多
We numerically investigate the electromagnetic properties of tellurium dielectric resonator metamaterial at the infrared wavelengths. The transmission spectra, effective permittivity and permeability of the periodic t...We numerically investigate the electromagnetic properties of tellurium dielectric resonator metamaterial at the infrared wavelengths. The transmission spectra, effective permittivity and permeability of the periodic tellurium metamaterial structure are investigated in detail. The linewidth of the structure in the direction of magnetic field W x has effects on the position and strength of the electric resonance and magnetic resonance modes. With appropriately optimizing the geometric dimensions of the designed structure, the proposed tellurium metamaterial structure can provide electric resonance mode and high order magnetic resonance mode in the same frequency band. This would be helpful to analyze and design low-loss negative refraction index metamaterials at the infrared wavelengths.展开更多
Dipoles with Lorentz-type resonant electromagnetic responses can realise negative effective parameters in their negative resonant region. The electric dipole and magnetic dipole can realise, respectively, negative per...Dipoles with Lorentz-type resonant electromagnetic responses can realise negative effective parameters in their negative resonant region. The electric dipole and magnetic dipole can realise, respectively, negative permittivity and negative permeability, so both the field distribution forms of electric and magnetic dipoles are fundamentals in designing left-handed metamaterial. Based on this principle, this paper studies the field distribution in high-permittivity dielectric materials. The field distributions at different resonant modes are analysed based on the dielectric resonator theory. The origination and influence factors of the electric and magnetic dipoles are confirmed. Numerical simulations indicate that by combining dielectric cubes with different sizes, the electric resonance frequency and magnetic resonance frequency can be superposed. Finally, experiments are carried out to verify the feasibility of all-dielectric left-handed metamaterial composed by this means.展开更多
In this work,we propose an all-dielectric frequency selective surface(FSS) composed of periodically placed highpermittivity dielectric resonators and a three-dimensional(3D) printed supporter.Mie resonances in the...In this work,we propose an all-dielectric frequency selective surface(FSS) composed of periodically placed highpermittivity dielectric resonators and a three-dimensional(3D) printed supporter.Mie resonances in the dielectric resonators offer strong electric and magnetic dipoles,quadrupoles,and higher order terms.The re-radiated electric and magnetic fields by these multipoles interact with the incident fields,which leads to total reflection or total transmission in some special frequency bands.The measured results of the fabricated FSS demonstrate a stopband fractional bandwidth(FBW)of 22.2%,which is consistent with the simulated result.展开更多
By way of employing a multimode method together with the multimode transmission matrixtechnique based on the theory of planar circuits, the paper presents computer-aided design and optimized de-sign of bandpass fllter...By way of employing a multimode method together with the multimode transmission matrixtechnique based on the theory of planar circuits, the paper presents computer-aided design and optimized de-sign of bandpass fllters with dielectric resonators, and their sample was tested. The experimental result ofthe sample shows a reasonable agreement with the designed one.展开更多
Some new experimental results of optically controlled dielectric resonator oscillators (DROs) are presented. A very stable X-band DRO was found to be optically tunable up to 17.5 MHz with modulation rate of 1.17 MHz/m...Some new experimental results of optically controlled dielectric resonator oscillators (DROs) are presented. A very stable X-band DRO was found to be optically tunable up to 17.5 MHz with modulation rate of 1.17 MHz/mW with red light illumination. And an even higher modulation rate of 2.24 MHz/mW with illumination of violet light was obtained. Instead of a drop in optically controlled DRO output power, a little rise of output power was achieved.展开更多
By applying the perturbation method and the complex-source-point theory, the theoretical research of measurement of complex permittivity of uniaxial anisotropic materials by means of an electromagnetic open resonator ...By applying the perturbation method and the complex-source-point theory, the theoretical research of measurement of complex permittivity of uniaxial anisotropic materials by means of an electromagnetic open resonator has been made, and the double refraction phenomenon due to anisotropy of measured dielectric materials has been quantitatively analyzed. Finally, measurements have been made on some single-crystal quartz specimens using an automated open resonator measurement system at 8mm band.展开更多
A wideband polarization reconfigurable dielectric resonator antenna excited by quasilumped quadrature coupler( QLQC) is proposed. By adjusting the value of varactor diode on the QLQC feed network,both the wideband L...A wideband polarization reconfigurable dielectric resonator antenna excited by quasilumped quadrature coupler( QLQC) is proposed. By adjusting the value of varactor diode on the QLQC feed network,both the wideband LP and CP dielectric resonator antennas( DRA) modes can be achieved. By selecting a different feed port,left-and right-handed CP conversion can be realized.It is found that the 10 dB impedance bandwidth of the LP and CP modes are 10. 1% and 44. 9%,respectively.For the CP mode,a very wide 3 dB axial ratio bandwidth of 37. 7% can be obtained which is much larger than that of the microstrip patch counterpart( 3. 8%). It is worth mentioning that the wideband CP DRA has a stable broadside radiation pattern across the whole operating band where the boresight gain is larger than 3 dBi.展开更多
A low-sidelobe-level( SLL) and wideband linear dielectric resonator antenna( DRA) array is proposed for 60 GHz millimeter wave communication. The array consists of 10 wideband DRAs which work at 60 GHz and it is fed b...A low-sidelobe-level( SLL) and wideband linear dielectric resonator antenna( DRA) array is proposed for 60 GHz millimeter wave communication. The array consists of 10 wideband DRAs which work at 60 GHz and it is fed by a Chebyshev feeding network to get a low SLL. To avoid the influence from the feeding network,a U-shaped substrate and a conformal ground are used,which can separate the DRA array and the feeding network. The parameter analysis and simulated results are presented.展开更多
A ceramic dielectric resonator antenna excited by a corner-cut square patch for the circularly-polarized operation is introduced. The effect of patch size and cut size is investigated, showing that the resonant freque...A ceramic dielectric resonator antenna excited by a corner-cut square patch for the circularly-polarized operation is introduced. The effect of patch size and cut size is investigated, showing that the resonant frequency of the antenna can be changed by simply changing the patch size. The reflection, axial ratio, and radiation characteristics of the antenna are found. Measurements were carried out to verify the design. The antenna is compact in structure, which is attractive in the application as the satellite communication terminals.展开更多
In this paper, the resonant frequency of a dual\|mode dielectric resonator is calculated using a finite difference time\|domain method. A new type of bandpass filter is designed with the calculated coupling coefficien...In this paper, the resonant frequency of a dual\|mode dielectric resonator is calculated using a finite difference time\|domain method. A new type of bandpass filter is designed with the calculated coupling coefficient. The filter designed in this paper has reached the design goal, verified by simulation with Ansoft HFSS.展开更多
Dielectric resonator methods constitute one of the most useful techniques for the measurement of electromagnetic material properties in the microwave frequency range. Several geometric configurations are used for this...Dielectric resonator methods constitute one of the most useful techniques for the measurement of electromagnetic material properties in the microwave frequency range. Several geometric configurations are used for this purpose and, in the present paper, we consider the case of a dielectric rod enclosed in a cylindrical metallic enclosure. To carry out dielectric measurements in this system it is necessary to know the highest permittivity constant value for which the resonance condition still can be attained into the cavity. Using an approach based on magnetic and electric Hertzian potentials we have derived the set of TE and TM modes for the relevant geometry described and, then we have calculated the valid dielectric permittivity constant range of measurements for low-loss materials in a cylindrical cavity using a simple resonance frequency condition. Finally, we present a simple application of this method in order to determine the dielectric permittivity constant of heavy oil with 11 API.展开更多
文摘The effects of cavity dimensions on the resonance frequency and resonance strength of the TE01δmode in split postdielectric resonator (SPDR) technique are investigated by using full-wave simulations. The results of simulations provide guidance for adjusting the dimensional parameters of the set-up to ensure that a strong TE01δ resonance mode is excited. The scaled designs of SPDR fixtures for operation at frequencies that are most important for applications are presented. These designs employ two sets of dielectric resonators (DRs) that can be fabricated from the standard ceramic materials. In addition, it is demonstrated that the resonance frequency of the TE01δ mode in the fixture can be tuned by adjusting the gap of the split DR.
基金supported by the National Key Research and Development Program of China under Grant 2020YFA0709800.
文摘Dielectric resonator magnetoelectric dipole(DRMED)arrays with enhanced isolation,reduced cross-polarization,and backward radiation are proposed for base station(BS)applications.The proposed antenna comprises an elevated dielectric resonator antenna(DRA)on a small metal plate above a sizeable common ground plane.The DRA is designed in its T Eδ11 mode,acting like a magnetic dipole.The surface current excited by the differential probes flowing on the small ground plane is equivalent to an electric dipole.Since these two equivalent dipoles are orthogonal,they have the magnetoelectric dipole characteristics with reduced backward radiation.Meanwhile,the small ground planes can be treated as decoupling structures to provide a neutralization path to cancel the original coupling path.A linearly-polarized 4-element prototype array was verified experimentally in previous work.Here,a dual-polarized DRMED antenna is presented to construct a 2-element and 4×4 array for BS applications.To investigate its MIMO performance,sophisticated multi-cell scenario simulations are carried out.By using the proposed dualpolarized DRMED array,the cellular system capacityis improved by 118.6%compared to a conventional DRA array.This significant MIMO system improvement is mainly due to the reduced backward radiation and,therefore,reduced inter-cell interferences.Measurements align well with the simulations.
基金supported by the Natural Science Foundation of Jiangsu Province under Grant BK20201438by the Natural Science Research Project of Jiangsu Provincial Institutions of Higher Education under Grant 20KJA510002by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX202825.
文摘This paper presents an overview of dielectric patch(DP)antennas developed in recent years.The employed DP resonator composed of a DP and a bottom substrate is analyzed comprehensively here,enabling the easy realization of a quasi-planar DP antenna.It combines the dual advantages of the conventional microstrip patch(MP)antenna and dielectric resonator(DR)antenna in terms of profile,gain,bandwidth,radiation efficiency,and design freedom.Furthermore,the DP antenna inherits the multi-mode characteristic of the DR antenna,thus it has a large number of high-order modes,including TMmn mode and TEmn mode.The high-order modes are widely applied,for example,by combining with the dominant TM10 mode to expand the bandwidth,or selecting multiple higher-order modes to implement a high-gain antenna.Additionally,the non-radiation high-order modes are also utilized to produce natural radiation null in filtering antenna design.In this paper,the design theories and techniques of DP antenna are introduced and investigated,including calculation and control methods of the resonant mode frequencies,analysis of the radiation mechanism,and applications of the multi-mode characteristic.This overview could provide guidance for the subsequent antenna design,thus effectively avoid time-consuming optimization.
文摘This paper proposes a new dielectric resonator antenna(DRA)design that can generate circularly polarized(CP)triple-band signals.Atripleband CP DRA antenna fed by a probe feed system is achieved with metal strips structure on side of DRA structure.The design start with conventional rectangular DRA with F shaped metal strips on DRA structure alongside the feed.Then,the F metal strip is enhanced by extending the length of the metal strip to obtain wider impedance bandwidth.Further improvement on the antenna performance is observed by improvised the conventional DRA structure.The method of removing part of DRA bottom resulted to higher antenna gain with triple band CP.The primary features of the proposed DRA include wide impedance matching bandwidth(BW)and broadband circular polarization(CP).The primary features of the proposedDRAinclude wide impedance matching bandwidth(BW)and broadband circular polarization(CP).The CP BW values recorded by the proposed antenna were∼11.27%(3.3–3.65 GHz),12.18%(4.17–4.69 GHz),and 1.74%(6.44–6.55 GHz)for impedance-matching BW values of 35.4%(3.3–4.69 GHz),1.74%(5.36–5.44 GHz),and 1.85%(6.41–6.55 GHz)with peak gains of 6.8 dBic,7.6 dBic,and 8.5 dBic,respectively,in the lower,central,and upper bands.The prototype of the proposed antenna geometry was fabricated and measured.A good agreement was noted between the simulated and the measured results.
基金supported by the National Natural Science Foundation of China under Grant 62071256National Natural Science Foundation of Jiangsu under Grant BK20201438+1 种基金supported by State Key Laboratory of Millimeter Waves (Nanjing) and Nantong Research Institute for Advanced Communication Technologies (Nantong)sponsored by Qing Lan Project of Jiangsu Province。
文摘In this paper, a low-profile wideband dielectric resonator antenna(DRA) with a very compact planar size is investigated. The antenna consists of a high permittivity dielectric sheet on the top, a low permittivity substrate in the middle, and a probe feeding structure at the bottom. By digging an annular slot in the designated area of the square dielectric sheet, the resonant frequency of fundamental TE111 mode can be effectively increased to be close to the high-order TE131 mode. The two modes can be finally merged together, yielding a wide impedance bandwidth of16.6%. Most importantly, the combination of the two modes is done on the premise of a fixed antenna planar size, which can be very compact and suitable for beam-scanning applications. A probe feeding structure is used to excite the DRA, making the antenna simple and practical to be integrated with other RF circuits. For verification, antenna prototypes with singlefeed linear polarization and differential-feed dual polarization were fabricated and measured. Reasonable agreement between the measured and simulated results is observed.
基金Global Fellowship Scheme of Universiti Sains Malaysia,research grant number USM RUT 1001/PELECT/854004
文摘This article presents a technical review of circularly polarized(CP) dielectric resonator antennas(DRA) for wideband applications.The primary objective of this review is,to highlight the techniques used by different researchers for generating circular polarization in DRA.First,a general idea of circular polarization and it advantages over linear polarization is presented,and then all the major developments made in the CP DRA are highlighted.The emphasis of the paper is on the wideband circularly polarized dielectric resonator antenna.The current state of the art and all the realizable features of the CP DRA are addressed comprehensively.Finally,some recommendations for future CP DRAs are given and the paper ends with concluding remarks.
基金This work was supported by Universiti Teknologi Malaysia under TDR grant vote 05G20 and HiCOE grant vote 4J415.
文摘In this article an ultra-wideband rectangular Dielectric Resonator Antenna is designed for millimeter wave 5G frequency band applications.Indoor 5G communications require antenna system with wide bandwidth and high efficiency to enhance the throughput in the channel.To fulfill such requirements a Dielectric Resonator Antenna(DRA)is designed here which has achieved an ultra-wide bandwidth of 20.15%(22.32–27.56 GHz)which is 5.24 GHz of bandwidth centered at 26 GHz as resonating frequency.This covers the complete band 30(24.3–27.5 GHz)of 5G spectrum.26 and 28 GHz are considered as most popular frequencies in millimeter wave 5G communications.The aperture fed DRA designed here has also achieved an efficiency of 96 percentage with maximum radiation in the broadside direction(Phi=0,Theta=0).The measured gain of the DRA is 6.3 dB.The DRA designed here has dimensions of 0.25λ0×0.22λ0×0.12λ0.under the characteristic’s mode.The DRA is placed over a substrate with dimensions 0.5λ0×0.5λ0×0.02λ0.A cross slot aperture has been made on the ground plane which is placed above to the substrate.Here a full ground plane is used to resonate the antenna and is of similar dimension to the substrate.A microstrip line with two concentric rings makes an annular feed structure is used to excite the DRA and is placed below the substrate.The DRA is excited here in characteristics mode TE1Y1 and is the only mode of excitation.The DRA is linearly polarized,and the characteristic mode of excitation is maintained with 50 Ohm input impedance of the antenna.The DRA also gives here a good difference between the co-pol and cross pol approximately 15 to 20 dB.This antenna is more suitable for 5G indoor applications in millimeter wave frequency band centered at 26 GHz.
文摘The broadband, narrow width, rectangular dielectric resonator antenna(RDRA) of aluminum nitride(εr=8.6) was designed and the effect of inclusion of air gap at the bottom of the dielectric resonator antenna(DRA),above the ground plane, was investigated. Gain around 7 dBi was obtained for DRA with air gap(DRAAG) over a broad bandwidth in upper X, Ku, and K bands. Further enhancement in gain could be obtained by placing a metal wall parallel to the length of DRA. However, due to the presence of metal wall, bandwidth was reduced. These structures with the metal wall are capable of operating over a wide band extending from Ku band to lower K band with the gain of around 10 dBi. CST Microwave Studio Software was used to simulate all these structures.Performance parameters of DRA with air gap were compared with several broadband DRA structures reported in recent literature. The proposed DRAAG with the metal wall in this paper is capable of operating over a wide bandwidth along with a significant gain.
基金Project supported by the National Basic Research Program of China (Grant No.2006CB601007)the National Natural Science Foundation of China (Grant No.10674006)+1 种基金the National High Technology Research and Development Program of China (Grant No.2007AA03Z238)the Foundation of the State Key Laboratory of Information Control Technology for Communication System,China (Grant No.9140C1304010803)
文摘Nowadays, the high-critical-temperature radio frequency superconducting quantum interference device (high-Tc rf SQUID) is usually coupled to a dielectric resonator that is a standard 10× 10×1 mm^3 SrTiO3 (STO) substrate with a YBa2Cu3O7-δ (YBCO) thin-film flux focuser deposited on it. Recently, we have simulated a dielectric resonator for the high-Tc rf SQUID by using the ANSOFT High Frequency Structure Simulator (ANSOFT HFSS). We simulate the resonant frequency and the quality factor of our dielectric resonator when it is unloaded or matches a 50-Ω impedance. The simulation results are quite close to the practical measurements. Our study shows that ANSOFT HFSS is quite suitable for simulating the dielectric resonator used for the high-Tc rf SQUID. Therefore, we think the ANSOFT HFSS can be very helpful for investigating the characteristics of dielectric resonators for high-Tc rf SQUIDs.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CBA00608,2012CB619203,2015CB351902,and 2015CB932402)the National Key Research Program of China(Grant No.2011ZX01015-001)the National Natural Science Foundation of China(Grant Nos.61036010,61177070,11374295,and U1431231)
文摘We numerically investigate the electromagnetic properties of tellurium dielectric resonator metamaterial at the infrared wavelengths. The transmission spectra, effective permittivity and permeability of the periodic tellurium metamaterial structure are investigated in detail. The linewidth of the structure in the direction of magnetic field W x has effects on the position and strength of the electric resonance and magnetic resonance modes. With appropriately optimizing the geometric dimensions of the designed structure, the proposed tellurium metamaterial structure can provide electric resonance mode and high order magnetic resonance mode in the same frequency band. This would be helpful to analyze and design low-loss negative refraction index metamaterials at the infrared wavelengths.
基金Project supported in part by the National Natural Science Foundation of China(Grant Nos.50632030,60871027 and 10804130)in part by the National Basic Research Program of China(Grant No.2009CB613306)the Natural Science Foundation of Shaanxi Province,China(Grant No.SJ08F01)
文摘Dipoles with Lorentz-type resonant electromagnetic responses can realise negative effective parameters in their negative resonant region. The electric dipole and magnetic dipole can realise, respectively, negative permittivity and negative permeability, so both the field distribution forms of electric and magnetic dipoles are fundamentals in designing left-handed metamaterial. Based on this principle, this paper studies the field distribution in high-permittivity dielectric materials. The field distributions at different resonant modes are analysed based on the dielectric resonator theory. The origination and influence factors of the electric and magnetic dipoles are confirmed. Numerical simulations indicate that by combining dielectric cubes with different sizes, the electric resonance frequency and magnetic resonance frequency can be superposed. Finally, experiments are carried out to verify the feasibility of all-dielectric left-handed metamaterial composed by this means.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61201030,61372045,61472045,and 61401229)the Science and Technology Project of Jiangsu Province,China(Grant No.BE2015002)+1 种基金the Open Research Program of the State Key Laboratory of Millimeter Waves,China(Grant Nos.K201616 and K201622)the Nanjing University of Posts and Telecommunications Scientific Foundation,China(Grant No.NY214148)
文摘In this work,we propose an all-dielectric frequency selective surface(FSS) composed of periodically placed highpermittivity dielectric resonators and a three-dimensional(3D) printed supporter.Mie resonances in the dielectric resonators offer strong electric and magnetic dipoles,quadrupoles,and higher order terms.The re-radiated electric and magnetic fields by these multipoles interact with the incident fields,which leads to total reflection or total transmission in some special frequency bands.The measured results of the fabricated FSS demonstrate a stopband fractional bandwidth(FBW)of 22.2%,which is consistent with the simulated result.
文摘By way of employing a multimode method together with the multimode transmission matrixtechnique based on the theory of planar circuits, the paper presents computer-aided design and optimized de-sign of bandpass fllters with dielectric resonators, and their sample was tested. The experimental result ofthe sample shows a reasonable agreement with the designed one.
基金supported by the National Science Foundation of China (NSFC)was also being financed by Royal society, U. K. during 1992
文摘Some new experimental results of optically controlled dielectric resonator oscillators (DROs) are presented. A very stable X-band DRO was found to be optically tunable up to 17.5 MHz with modulation rate of 1.17 MHz/mW with red light illumination. And an even higher modulation rate of 2.24 MHz/mW with illumination of violet light was obtained. Instead of a drop in optically controlled DRO output power, a little rise of output power was achieved.
基金Supported by the Doctoral Fbundation of the State Education Commission of China
文摘By applying the perturbation method and the complex-source-point theory, the theoretical research of measurement of complex permittivity of uniaxial anisotropic materials by means of an electromagnetic open resonator has been made, and the double refraction phenomenon due to anisotropy of measured dielectric materials has been quantitatively analyzed. Finally, measurements have been made on some single-crystal quartz specimens using an automated open resonator measurement system at 8mm band.
基金Supported by the National Natural Science Foundation of China(61771055,61527805)
文摘A wideband polarization reconfigurable dielectric resonator antenna excited by quasilumped quadrature coupler( QLQC) is proposed. By adjusting the value of varactor diode on the QLQC feed network,both the wideband LP and CP dielectric resonator antennas( DRA) modes can be achieved. By selecting a different feed port,left-and right-handed CP conversion can be realized.It is found that the 10 dB impedance bandwidth of the LP and CP modes are 10. 1% and 44. 9%,respectively.For the CP mode,a very wide 3 dB axial ratio bandwidth of 37. 7% can be obtained which is much larger than that of the microstrip patch counterpart( 3. 8%). It is worth mentioning that the wideband CP DRA has a stable broadside radiation pattern across the whole operating band where the boresight gain is larger than 3 dBi.
基金Supported by the National Natural Science Foundation of China(No.61171031)
文摘A low-sidelobe-level( SLL) and wideband linear dielectric resonator antenna( DRA) array is proposed for 60 GHz millimeter wave communication. The array consists of 10 wideband DRAs which work at 60 GHz and it is fed by a Chebyshev feeding network to get a low SLL. To avoid the influence from the feeding network,a U-shaped substrate and a conformal ground are used,which can separate the DRA array and the feeding network. The parameter analysis and simulated results are presented.
基金Project supported by the National High-Technology Research and Development Project of China (Grant No.2007AA12Z125)the Innovation Foundation of Shanghai University (Grant No.SHUCX092130)
文摘A ceramic dielectric resonator antenna excited by a corner-cut square patch for the circularly-polarized operation is introduced. The effect of patch size and cut size is investigated, showing that the resonant frequency of the antenna can be changed by simply changing the patch size. The reflection, axial ratio, and radiation characteristics of the antenna are found. Measurements were carried out to verify the design. The antenna is compact in structure, which is attractive in the application as the satellite communication terminals.
文摘In this paper, the resonant frequency of a dual\|mode dielectric resonator is calculated using a finite difference time\|domain method. A new type of bandpass filter is designed with the calculated coupling coefficient. The filter designed in this paper has reached the design goal, verified by simulation with Ansoft HFSS.
文摘Dielectric resonator methods constitute one of the most useful techniques for the measurement of electromagnetic material properties in the microwave frequency range. Several geometric configurations are used for this purpose and, in the present paper, we consider the case of a dielectric rod enclosed in a cylindrical metallic enclosure. To carry out dielectric measurements in this system it is necessary to know the highest permittivity constant value for which the resonance condition still can be attained into the cavity. Using an approach based on magnetic and electric Hertzian potentials we have derived the set of TE and TM modes for the relevant geometry described and, then we have calculated the valid dielectric permittivity constant range of measurements for low-loss materials in a cylindrical cavity using a simple resonance frequency condition. Finally, we present a simple application of this method in order to determine the dielectric permittivity constant of heavy oil with 11 API.