期刊文献+
共找到5,739篇文章
< 1 2 250 >
每页显示 20 50 100
Damage Mechanism of Ultra-thin Asphalt Overlay(UTAO) based on Discrete Element Method
1
作者 杜晓博 GAO Liang +4 位作者 RAO Faqiang 林宏伟 ZHANG Hongchao SUN Mutian XU Xiuchen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期473-486,共14页
Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and fou... Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force. 展开更多
关键词 ultra-thin asphalt overlay pavement distress discrete element method meso-mechanics damage mechanism
下载PDF
Investigation of the block toppling evolution of a layered model slope by centrifuge test and discrete element modeling
2
作者 Leilei Jin Hongkai Dong +3 位作者 Fei Ye Yufeng Wei Jianfeng Liu Changkui Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期112-122,共11页
Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model sl... Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe. 展开更多
关键词 Block toppling CENTRIFUGE Anti-dip slope Failure mechanism discrete element method
下载PDF
Nonlinear wave dispersion in monoatomic chains with lumped and distributed masses:discrete and continuum models
3
作者 E.GHAVANLOO S.EL-BORGI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期633-648,共16页
The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can repr... The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can represent the wave propagation problem in a non-homogeneous material consisting of heavy inclusions embedded in a matrix.The inclusions are idealized by lumped masses,and the matrix between adjacent inclusions is modeled by a nonlinear spring with distributed masses.Additionally,the model is capable of depicting the wave propagation in bi-material bars,wherein the first material is represented by a rigid particle and the second one is represented by a nonlinear spring with distributed masses.The discrete model of the nonlinear monoatomic chain with lumped and distributed masses is first considered,and a closed-form expression of the dispersion relation is obtained by the second-order Lindstedt-Poincare method(LPM).Next,a continuum model for the nonlinear monoatomic chain is derived directly from its discrete lattice model by a suitable continualization technique.The subsequent use of the second-order method of multiple scales(MMS)facilitates the derivation of the corresponding nonlinear dispersion relation in a closed form.The novelties of the present study consist of(i)considering the inertia of nonlinear springs on the dispersion behavior of the discrete mass-spring chains;(ii)developing the second-order LPM for the wave propagation in the discrete chains;and(iii)deriving a continuum model for the nonlinear monoatomic chains with lumped and distributed masses.Finally,a parametric study is conducted to examine the effects of the design parameters and the distributed spring mass on the nonlinear dispersion relations and phase velocities obtained from both the discrete and continuum models.These parameters include the ratio of the spring mass to the lumped mass,the nonlinear stiffness coefficient of the spring,and the wave amplitude. 展开更多
关键词 nonlinear mass-spring chain discrete model continuum model LindstedtPoincare method(LPM) method of multiple scales(MMS) DISPERSION phase velocity
下载PDF
Discrete Element Modelling of Damage Evolution of Concrete Considering Meso-Structure of ITZ
4
作者 Weiliang Gao Shixu Jia +1 位作者 Tingting Zhao Zhiyong Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3495-3511,共17页
The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element metho... The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element method(DEM)has been developed for modeling concrete.This new approach efficiently simulates the meso-structure of ITZs,accurately capturing their heterogeneous properties.Validation against established uniaxial compression experiments confirms the precision of thismodel.The proposedmodel canmodel the process of damage evolution containing cracks initiation,propagation and penetration.Under increasing loads,cracks within ITZs progressively accumulate,culminating in macroscopic fractures that traverse themortarmatrix,forming the complex,serpentine path of cracks.This study reveals four distinct displacement patterns:tensile compliant,tensile opposite,mixed tensile-shear,and shear opposite patterns,each indicative of different stages in concrete’s damage evolution.The widening angle of these patterns delineates the progression of cracks,with the tensile compliant pattern signaling the initial crack appearance and the shear opposite pattern indicating the concrete model’s ultimate failure. 展开更多
关键词 discrete element method damage evolution interfacial transition zone meso-structure model
下载PDF
Correlations between mineral composition and mechanical properties of granite using digital image processing and discrete element method 被引量:1
5
作者 Changdi He Brijes Mishra +3 位作者 Qingwen Shi Yun Zhao Dajun Lin Xiao Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期949-962,共14页
This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(... This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests. 展开更多
关键词 GRANITE Digital image processing discrete element method Mineral composition Mechanical properties
下载PDF
Computational fluid dynamics-discrete element method simulation of stirred tank reactor for graphene production
6
作者 Shuaishuai Zhou Jing Li +5 位作者 Kaixiang Pang Chunxi Lu Feng Zhu Congzhen Qiao Yajie Tian Jingwei Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期196-207,共12页
Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the productio... Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the production efficiency.In this paper,these interactions were revealed by computational fluid dynamics–discrete element method(CFD-DEM)method.Based on simulation results,both liquid phase flow hydrodynamics and particle motion behavior have been analyzed,which gave the general information of the multiphase flow behavior inside the stirred tank reactor as to graphene production.By calculating the threshold at the beginning of graphite exfoliation process,the shear force from the slip velocity was determined as the active force.These results can support the optimization of the graphene production process. 展开更多
关键词 Computational fluid dynamics discrete element method Stirred tank LPE process Liquid-particle interactions
下载PDF
Capability of discrete element method to investigate the macro-micro mechanical behaviours of granular soils considering different stress conditions and morphological gene mutation
7
作者 Wei Xiong Jianfeng Wang Zhuang Cheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2731-2745,共15页
Discrete element method(DEM)has been widely utilised to model the mechanical behaviours of granular materials.However,with simplified particle morphology or rheology-based rolling resistance models,DEM failed to descr... Discrete element method(DEM)has been widely utilised to model the mechanical behaviours of granular materials.However,with simplified particle morphology or rheology-based rolling resistance models,DEM failed to describe some responses,such as the particle kinematics at the grain-scale and the principal stress ratio against axial strain at the macro-scale.This paper adopts a computed tomography(CT)-based DEM technique,including particle morphology data acquisition from micro-CT(mCT),spherical harmonic-based principal component analysis(SH-PCA)-based particle morphology reconstruction and DEM simulations,to investigate the capability of DEM with realistic particle morphology for modelling granular soils’micro-macro mechanical responses with a consideration of the initial packing state,the morphological gene mutation degree,and the confining stress condition.It is found that DEM with realistic particle morphology can reasonably reproduce granular materials’micro-macro mechanical behaviours,including the deviatoric stressevolumetric straineaxial strain response,critical state behaviour,particle kinematics,and shear band evolution.Meanwhile,the role of multiscale particle morphology in granular soils depends on the initial packing state and the confining stress condition.For the same granular soils,rougher particle surfaces with a denser initial packing state and a higher confining stress condition result in a higher degree of shear strain localisation. 展开更多
关键词 discrete element method(DEM) Spherical harmonic-based principal component analysis(SH-PCA) Particle morphology Granular so
下载PDF
Effect of heterogeneity on mechanical and micro-seismic behaviors of sandstone subjected to multi-level cyclic loading: A discrete element method investigation
8
作者 Zhengyang Song Zhen Yang +3 位作者 Min Zhang Fei Wang Martin Herbst Heinz Konietzky 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2556-2581,共26页
In numerical simulation of the mechanical responses and acoustic emission(AE)characteristics of rocks under cyclic loading,the impacts of compositional heterogeneities of mineral grains have barely been considered.Thi... In numerical simulation of the mechanical responses and acoustic emission(AE)characteristics of rocks under cyclic loading,the impacts of compositional heterogeneities of mineral grains have barely been considered.This will lead to a poor reproduction of rock’s behaviors in terms of stress-strain relationship and micro-seismic characteristics in numerical simulation.This work aims to analyze and reveal the impact of parameter heterogeneity on the rock’s fatigue and micro-seismic properties based on PFC3D.Two distribution patterns(uniform and Weibull distributions),are implemented to assign four critical parameters(i.e.tensile strength,cohesion,parallel bond stiffness and linear stiffness)for 32 sets of numerical schemes.The results show that the models with high heterogeneity of tensile strength and cohesion can better reproduce the stress-strain relationship as well as the patterns of cumulative AE counts and energy magnitude.The evolution of the proportion of three-level AE events in the laboratory test is consistent with the numerical results when the highly heterogeneous tensile strength and cohesion are distributed.The numerical results can provide practical guidance to the PFC-based modeling of rock heterogeneity when exposed to multi-level cyclic loading and AE monitoring. 展开更多
关键词 discrete element method(DEM) HETEROGENEITY Weibull distribution PFC3D Cyclic loading Acoustic emission(AE)
下载PDF
Symplectic partitioned Runge-Kutta method based onthe eighth-order nearly analytic discrete operator and its wavefield simulations 被引量:3
9
作者 张朝元 马啸 +1 位作者 杨磊 宋国杰 《Applied Geophysics》 SCIE CSCD 2014年第1期89-106,117,118,共20页
We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this te... We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this technique uses an eighth-orderaccurate nearly analytic discrete (NAD) operator to discretize high-order spatial differentialoperators and employs a second-order SPRK method to discretize temporal derivatives.The stability criteria and numerical dispersion relations of the eighth-order NSPRK methodare given by a semi-analytical method and are tested by numerical experiments. We alsoshow the differences of the numerical dispersions between the eighth-order NSPRK methodand conventional numerical methods such as the fourth-order NSPRK method, the eighth-order Lax-Wendroff correction (LWC) method and the eighth-order staggered-grid (SG)method. The result shows that the ability of the eighth-order NSPRK method to suppress thenumerical dispersion is obviously superior to that of the conventional numerical methods. Inthe same computational environment, to eliminate visible numerical dispersions, the eighth-order NSPRK is approximately 2.5 times faster than the fourth-order NSPRK and 3.4 timesfaster than the fourth-order SPRK, and the memory requirement is only approximately47.17% of the fourth-order NSPRK method and 49.41% of the fourth-order SPRK method,which indicates the highest computational efficiency. Modeling examples for the two-layermodels such as the heterogeneous and Marmousi models show that the wavefields generatedby the eighth-order NSPRK method are very clear with no visible numerical dispersion.These numerical experiments illustrate that the eighth-order NSPRK method can effectivelysuppress numerical dispersion when coarse grids are adopted. Therefore, this methodcan greatly decrease computer memory requirement and accelerate the forward modelingproductivity. In general, the eighth-order NSPRK method has tremendous potential value forseismic exploration and seismology research. 展开更多
关键词 SYMPLECTIC partitioned RUNGE-KUTTA method NEARLY ANALYTIC discrete OPERATOR Numerical dispersion Wavefield simulation
下载PDF
Influence of heterogeneity on rock strength and stiffness using discrete element method and parallel bond model 被引量:7
10
作者 Spyridon Liakas Catherine O’Sullivan Charalampos Saroglou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期575-584,共10页
The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are ... The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are important to establish the extent to which those models can capture realistic rock behaviors.Hitherto the focus in such comparison studies has either been on homogeneous specimens or use of two-dimensional(2D) models.In situ rock formations are often heterogeneous,thus exploring the ability of this type of models to capture heterogeneous material behavior is important to facilitate their use in design analysis.In situ stress states are basically three-dimensional(3D),and therefore it is important to develop 3D models for this purpose.This paper revisits an earlier experimental study on heterogeneous specimens,of which the relative proportions of weaker material(siltstone) and stronger,harder material(sandstone) were varied in a controlled manner.Using a 3D DEM model with the parallel bond model,virtual heterogeneous specimens were created.The overall responses in terms of variations in strength and stiffness with different percentages of weaker material(siltstone) were shown to agree with the experimental observations.There was also a good qualitative agreement in the failure patterns observed in the experiments and the simulations,suggesting that the DEM data enabled analysis of the initiation of localizations and micro fractures in the specimens. 展开更多
关键词 discrete element method (DEM) HETEROGENEOUS ROCKS Strength and STIFFNESS PARALLEL BOND model
下载PDF
Assessment of strain bursting in deep tunnelling by using the finite-discrete element method 被引量:8
11
作者 Ioannis Vazaios Mark S.Diederichs Nicholas Vlachopoulos 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第1期12-37,共26页
Rockbursting in deep tunnelling is a complex phenomenon posing significant challenges both at the design and construction stages of an underground excavation within hard rock masses and under high in situ stresses. Wh... Rockbursting in deep tunnelling is a complex phenomenon posing significant challenges both at the design and construction stages of an underground excavation within hard rock masses and under high in situ stresses. While local experience, field monitoring, and informed data-rich analysis are some of the tools commonly used to manage the hazards and the associated risks, advanced numerical techniques based on discontinuum modelling have also shown potential in assisting in the assessment of rockbursting. In this study, the hybrid finite-discrete element method(FDEM) is employed to investigate the failure and fracturing processes, and the mechanisms of energy storage and rapid release resulting in bursting, as well as to assess its utility as part of the design process of underground excavations.Following the calibration of the numerical model to simulate a deep excavation in a hard, massive rock mass, discrete fracture network(DFN) geometries are integrated into the model in order to examine the impact of rock structure on rockbursting under high in situ stresses. The obtained analysis results not only highlight the importance of explicitly simulating pre-existing joints within the model, as they affect the mobilised failure mechanisms and the intensity of strain bursting phenomena, but also show how the employed joint network geometry, the field stress conditions, and their interaction influence the extent and depth of the excavation induced damage. Furthermore, a rigorous analysis of the mass and velocity of the ejected rock blocks and comparison of the obtained data with well-established semi-empirical approaches demonstrate the potential of the method to provide realistic estimates of the kinetic energy released during bursting for determining the energy support demand. 展开更多
关键词 ROCKBURST Finite-discrete element method(FDEM) Deep TUNNELLING Hard rock EXCAVATIONS Brittle fracturing discrete fracture network(DFN)
下载PDF
Characterizing the influence of stress-induced microcracks on the laboratory strength and fracture development in brittle rocks using a finite-discrete element method-micro discrete fracture network FDEM-μDFN approach 被引量:6
12
作者 Pooya Hamdi Doug Stead Davide Elmo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第6期609-625,共17页
Heterogeneity is an inherent component of rock and may be present in different forms including mineral heterogeneity,geometrical heterogeneity,weak grain boundaries and micro-defects.Microcracks are usually observed i... Heterogeneity is an inherent component of rock and may be present in different forms including mineral heterogeneity,geometrical heterogeneity,weak grain boundaries and micro-defects.Microcracks are usually observed in crystalline rocks in two forms:natural and stress-induced;the amount of stressinduced microcracking increases with depth and in-situ stress.Laboratory results indicate that the physical properties of rocks such as strength,deformability,P-wave velocity and permeability are influenced by increase in miciocrack intensity.In this study,the finite-discrete element method(FDEM)is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks using the proposed micro discrete fracture network(μDFN) approach.The characteristics of the microcracks required to create μDFN models are obtained through image analyses of thin sections of Lac du Bonnet granite adopted from published literature.A suite of two-dimensional laboratory tests including uniaxial,triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data.The FDEM-μDFN models indicate that micro-heterogeneity has a profound influence on both the mechanical behavior and resultant fracture pattern.An increase in the microcrack intensity leads to a reduction in the strength of the sample and changes the character of the rock strength envelope.Spalling and axial splitting dominate the failure mode at low confinement while shear failure is the dominant failure mode at high confinement.Numerical results from simulated compression tests show that microcracking reduces the cohesive component of strength alone,and the frictional strength component remains unaffected.Results from simulated Brazilian tests show that the tensile strength is influenced by the presence of microcracks,with a reduction in tensile strength as microcrack intensity increases.The importance of microcrack heterogeneity in reproducing a bi-linear or S-shape failure envelope and its effects on the mechanisms leading to spalling damage near an underground opening are also discussed. 展开更多
关键词 Finite-discrete element method (FDEM)Micro discrete FRACTURE network (mDFN)Brittle FRACTURE
下载PDF
Understanding roof deformation mechanics and parametric sensitivities of coal mine entries using the discrete element method 被引量:8
13
作者 Rami Abousleiman Gabriel Walton Sankhaneel Sinha 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第1期123-129,共7页
Although conventional coal mine designs are conservative regarding pillar strength,local failures such as roof-falls and pillar bursts still affect mine safety and operations.Previous studies have identified that disc... Although conventional coal mine designs are conservative regarding pillar strength,local failures such as roof-falls and pillar bursts still affect mine safety and operations.Previous studies have identified that discontinuous,layered roof materials have some self-supporting capacity.This research is a preliminary step towards understanding these mechanics in coal-measure rocks.Although others have considered broad conceptual models and simplified analogs for mine roof behavior,this study presents a unique numerical model that more completely represents in-situ roof conditions.The discrete element method(DEM)is utilized to conduct a parametric analysis considering a range of in-situ stress ratios,material properties,and joint networks to determine the parameters controlling the stability of single-entries modeled in two-dimensions.Model results are compared to empirical observations of roof-support effectiveness(ARBS)in the context of the coal mine roof rating(CMRR)system.Results such as immediate roof displacement,overall stability,and statistical relationships between model parameters and outcomes are presented herein.Potential practical applications of this line of research include:(1)roof-support optimization for a range of coal-measure rocks,(2)establishment of a relationship between roof stability and pillar stress,and(3)determination of which parameters are most critical to roof stability and therefore require concentrated evaluation. 展开更多
关键词 Numerical modeling discrete element method Coal mine ROOF rating ANALYSIS of ROOF bolt systems Sensitivity ANALYSIS Strain SOFTENING ubiquitous joints discrete fracture network
下载PDF
Numerical investigations on mechanical characteristics and failure mechanism of outwash deposits based on random meso-structures using discrete element method 被引量:2
14
作者 张强 徐卫亚 +2 位作者 刘沁雅 沈俊良 闫龙 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2894-2905,共12页
Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this wo... Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this work, random meso-structure of outwash deposits was constructed by the technique of computer random simulation based on characteristics of its meso-structure in the statistical sense and some simplifications, and a series of large direct shear tests on numerical samples of outwash deposits with stone contents of 15%, 30%, 45% and 60% were conducted using the discrete element method to further investigate its mechanical characteristics and failure mechanism under external load. The results show that the deformation characteristics and shear strength of outwash deposits are to some extent improved with the increase of stone content, and the shear stress–shear displacement curves of outwash deposits show great differences at the post-peak stage due to the random spatial distribution and content of stones. From the mesoscopic view, normal directions of contacts between "soil" and "stone" particles undergo apparent deflection as the shear displacement continues during the shearing process, accompanying redistribution of the magnitude of contact forces during the shearing process. For outwash deposits, the shear zone formed after shear failure is an irregular stripe due to the movements of stones near the shear zone, and it expands gradually with the increase of stone content. In addition, there is an approximately linear relation between the mean increment of internal friction angle and the stone content lying between 30% and 60%, and a concave nonlinear relation between the mean increment of cohesion and stone content, which are in good agreement with the existing research results. 展开更多
关键词 outwash DEPOSITS RANDOM meso-structures discrete ELEMENT method NUMERICAL tests mechanical characteristics FAILURE mechanism
下载PDF
THE DYNAMICAL BEHAVIOR OF FULLY DISCRETE SPECTRAL METHOD FOR NONLINEAR SCHRODINGER EQUATION WITH WEAKLY DAMPED 被引量:3
15
作者 向新民 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1999年第2期165-176,共12页
Nonlinear Schrodinger equation (NSE) arises in many physical problems. It is a very important equation. A lot of works studied the wellposed, the existence of solution of NSE etc. And there are many works studied the ... Nonlinear Schrodinger equation (NSE) arises in many physical problems. It is a very important equation. A lot of works studied the wellposed, the existence of solution of NSE etc. And there are many works studied the numerical methods for it. Recently, since the development of infinite dimensional dynamic system the dynamical behavior of NSE has been investigated. The paper [1] studied the long time wellposedness, the existence of universal attractor and the estimate of Lyapunov exponent for NSE with weakly damped. At the same time it was need to study the large time new computational methods and to discuss its convergence error estimate, the existence of approximate attractors etc. In this pape we study the NSE with weakly damped (1.1). We assume,where 0【λ【2 is a constant. If we wish to construct the higher accuracy computational scheme, it will be difficult that staigh from the equation (1.1). Therefore we start with (1. 4) and use fully discrete Fourier spectral method with time difference to 展开更多
关键词 nonlinear SCHRODINGER equation INFINITE dimensional dynamic system dynamical behavior fully discrete spectral method large TIME convergence difference scheme vrich TIME differ-
下载PDF
Study on the particle breakage of ballast based on a GPU accelerated discrete element method 被引量:3
16
作者 Guang-Yu Liu Wen-Jie Xu +1 位作者 Qi-Cheng Sun Nicolin Govender 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第2期461-471,共11页
Breakage of particles will have greatly influence on mechanical behavior of granular material(GM)under external loads,such as ballast,rockfill and sand.The discrete element method(DEM)is one of the most popular method... Breakage of particles will have greatly influence on mechanical behavior of granular material(GM)under external loads,such as ballast,rockfill and sand.The discrete element method(DEM)is one of the most popular methods for simulating GM as each particle is represented on its own.To study breakage mechanism of particle breakage,a cohesive contact mode is developed based on the GPU accelerated DEM code-Blaze-DEM.A database of the 3D geometry model of rock blocks is established based on the 3D scanning method.And an agglomerate describing the rock block with a series of non-overlapping spherical particles is used to build the DEM numerical model of a railway ballast sample,which is used to the DEM oedometric test to study the particles’breakage characteristics of the sample under external load.Furthermore,to obtain the meso-mechanical parameters used in DEM,a black-analysis method is used based on the laboratory tests of the rock sample.Based on the DEM numerical tests,the particle breakage process and mechanisms of the railway ballast are studied.All results show that the developed code can better used for large scale simulation of the particle breakage analysis of granular material. 展开更多
关键词 discrete element method(DEM) Particle breakage Graphical processing unit(GPU) Railway ballast Granular material(GM)
下载PDF
A discrete Boltzmann model with symmetric velocity discretization for compressible flow
17
作者 林传栋 孙笑朋 +2 位作者 苏咸利 赖惠林 方晓 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期374-382,共9页
A discrete Boltzmann model(DBM) with symmetric velocity discretization is constructed for compressible systems with an adjustable specific heat ratio in the external force field. The proposed two-dimensional(2D) nine-... A discrete Boltzmann model(DBM) with symmetric velocity discretization is constructed for compressible systems with an adjustable specific heat ratio in the external force field. The proposed two-dimensional(2D) nine-velocity scheme has better spatial symmetry and numerical accuracy than the discretized velocity model in literature [Acta Aerodyn. Sin.40 98108(2022)] and owns higher computational efficiency than the one in literature [Phys. Rev. E 99 012142(2019)].In addition, the matrix inversion method is adopted to calculate the discrete equilibrium distribution function and force term, both of which satisfy nine independent kinetic moment relations. Moreover, the DBM could be used to study a few thermodynamic nonequilibrium effects beyond the Euler equations that are recovered from the kinetic model in the hydrodynamic limit via the Chapman–Enskog expansion. Finally, the present method is verified through typical numerical simulations, including the free-falling process, Sod’s shock tube, sound wave, compressible Rayleigh–Taylor instability,and translational motion of a 2D fluid system. 展开更多
关键词 discrete Boltzmann method compressible flow nonequilibrium effect kinetic method
下载PDF
A review of methods,applications and limitations for incorporating fluid flow in the discrete element method 被引量:4
18
作者 Tuo Wang Fengshou Zhang +1 位作者 Jason Furtney Branko Damjanac 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期1005-1024,共20页
The past decade has witnessed the substantial growth in research interests and progress on the subject of coupled hydro-mechanical processes in rocks and soils,driven mainly by the surge of research in unconventional ... The past decade has witnessed the substantial growth in research interests and progress on the subject of coupled hydro-mechanical processes in rocks and soils,driven mainly by the surge of research in unconventional hydrocarbon reservoirs and associated hazards.Many coupling techniques have been developed to include the effects of fluid flow in the discrete element method(DEM),and the techniques have been applied to a variety of geomechanical problems.Although these coupling methods have been successfully applied in various engineering fields,no single fluid/DEM coupling method is universal due to the complexity of engineering problems and the limitations of the numerical methods.For researchers and engineers,the key to solve a specific problem is to select the most appropriate fluid/DEM coupling method among these modeling technologies.The purpose of this paper is to give a comprehensive review of fluid flow/DEM coupling methods and relevant research.Given their importance,the availability or unavailability of best practice guidelines is outlined.The theoretical background and current status of DEM are introduced first,and the principles,applications,and advantages and disadvantages of different fluid flow/DEM coupling methods are discussed.Finally,a summary with speculation on future development trends is given. 展开更多
关键词 Hydro-mechanical process Fluid/discrete element method(DEM) coupling GEOMECHANICS Numerical modeling
下载PDF
A new method to simulate irregular particles by discrete element method 被引量:2
19
作者 Rui Gao Xin Du +2 位作者 Yawu Zeng Yong Li Jing Yan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2012年第3期276-281,共6页
Granular materials are ubiquitous in nature and important in various applications such as road and railway engineering. Granular materials exhibit complicated mechanical behaviors, which are affected significantly by ... Granular materials are ubiquitous in nature and important in various applications such as road and railway engineering. Granular materials exhibit complicated mechanical behaviors, which are affected significantly by the irregular shape of particles. Currently, the discrete element method (DEM) has been accepted as an effective approach to investigate the mechanical behaviors of granular materials. However, there are scarce simulations based on DEM in literatures considering the irregularity of particle shape. A new method is proposed to simulate individual real particle with irregular shape using clump constituted by overlapping spheres. First, the geometric model of real particle with surface nodes and inner nodes is established through digitally processing the computerized tomography (CT) scanning data. Second, a clump consisting of spheres is generated to simulate the real particle using a minimum distance criterion. The criterion is implemented by tree optimization algorithm. Influential factors are also introduced to balance the model accuracy and computing cost. Effects of the influential factors, including the density of geometric grid and the minimum distance, on simulations are discussed. Results show that this new method is simpler and more efficient than the previous methods in terms of the model accuracy and computing cost. 展开更多
关键词 irregular particles discrete element method(DEM) influential factors
下载PDF
Parallel Computing of Discrete Element Method on GPU 被引量:2
20
作者 Teruyoshi Washizawa Yasuhiro Nakahara 《Applied Mathematics》 2013年第1期242-247,共6页
General purpose computing on GPU for scientific computing has been rapidly growing in recent years. We investigate the applicability of GPU to discrete element method (DEM) often used in particle motion simulation. NV... General purpose computing on GPU for scientific computing has been rapidly growing in recent years. We investigate the applicability of GPU to discrete element method (DEM) often used in particle motion simulation. NVIDIA provides a sample code for this type of simulation, which obtained superior performance than CPU in computational time. A computational model of the contact force in NVIDIA’s sample code is, however, too simple to use in practice. This paper modifies the NVIDIA’s simple model by replacing it with the practical model. The computing speed of the practical model on GPU is compared with the simple one on GPU and with the practical one on CPU in numerical experiments. The result shows that the practical model on GPU obtains the computing speed 6 times faster than the practical one on CPU while 7 times slower than that of the simple one on GPU. The effects of the GPU architectures on the computing speed are analyzed. 展开更多
关键词 GPU PARTICLE Motion Simulation discrete Element method WARP DIVERGENCE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部