Solid wastes generated by the metallurgical industry contribute significantly towards the enhancement of environmental pollution. The handling, utilization, and safe disposal of these solid wastes are major concerns f...Solid wastes generated by the metallurgical industry contribute significantly towards the enhancement of environmental pollution. The handling, utilization, and safe disposal of these solid wastes are major concerns for the world. Dolochar is such a solid waste generated by the sponge iron industry. Investigations were carried out on the physical, mineralogical, and chemical characteristics for the efficient utilization of dolochar. The detailed studies on physico-chemical properties and petrography were carded out by optical microscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Characterization studies revealed that the dolochar consists of quartz (free as well as locked), free lime, Fe particles, and Ca or Mg and/or Ca+Mg+Fe oxide phases. The washability data of-300 ~m dolochar samples indicated that clean coal with 41wt% ash at 18% yield can be produced from dolochar with 78wt% ash. The studies further suggested that the liberation of the dolochar is hard to achieve for clear separation. The dolochar is observed to have high ash fusion temperature and the un- burned carbon can be best utilized for power generation.展开更多
In recent years,composite pellet production with added reductant has been developed instead of traditional iron production.Composite pellets produced by the addition of appropriate proportions of reductant produce spo...In recent years,composite pellet production with added reductant has been developed instead of traditional iron production.Composite pellets produced by the addition of appropriate proportions of reductant produce sponge iron in the reductant melting process at high temperatures.The elements created in the structure by pellet production directly affect the quality of the product obtained by determining the chemical composition and the appropriate reaction temperature.In this study,sponge iron ore concentrate(scale)and reductant(coke coal dust and sodium bentonite)were mixed at certain proportions to produce composite pellet samples;the effects of addition rate of the reductant material of sodium bentonite(1 wt%−4 wt%)and variation in reaction temperature(900−1200℃)on the metallization and compressive strength properties of the produced composite pellet samples were investigated.The analysis results show that the highest compressive strength is obtained from pellet samples produced with 3%sodium bentonite at 1100℃.Additionally,SEM-EDS analysis results of the samples show that the morphologic structure has much lower porosity rates compared to samples produced under the other conditions which makes the samples denser and increases the metallization properties.展开更多
基金the Odisha State Pollution Control Board,Bhubaneswar,India
文摘Solid wastes generated by the metallurgical industry contribute significantly towards the enhancement of environmental pollution. The handling, utilization, and safe disposal of these solid wastes are major concerns for the world. Dolochar is such a solid waste generated by the sponge iron industry. Investigations were carried out on the physical, mineralogical, and chemical characteristics for the efficient utilization of dolochar. The detailed studies on physico-chemical properties and petrography were carded out by optical microscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Characterization studies revealed that the dolochar consists of quartz (free as well as locked), free lime, Fe particles, and Ca or Mg and/or Ca+Mg+Fe oxide phases. The washability data of-300 ~m dolochar samples indicated that clean coal with 41wt% ash at 18% yield can be produced from dolochar with 78wt% ash. The studies further suggested that the liberation of the dolochar is hard to achieve for clear separation. The dolochar is observed to have high ash fusion temperature and the un- burned carbon can be best utilized for power generation.
文摘In recent years,composite pellet production with added reductant has been developed instead of traditional iron production.Composite pellets produced by the addition of appropriate proportions of reductant produce sponge iron in the reductant melting process at high temperatures.The elements created in the structure by pellet production directly affect the quality of the product obtained by determining the chemical composition and the appropriate reaction temperature.In this study,sponge iron ore concentrate(scale)and reductant(coke coal dust and sodium bentonite)were mixed at certain proportions to produce composite pellet samples;the effects of addition rate of the reductant material of sodium bentonite(1 wt%−4 wt%)and variation in reaction temperature(900−1200℃)on the metallization and compressive strength properties of the produced composite pellet samples were investigated.The analysis results show that the highest compressive strength is obtained from pellet samples produced with 3%sodium bentonite at 1100℃.Additionally,SEM-EDS analysis results of the samples show that the morphologic structure has much lower porosity rates compared to samples produced under the other conditions which makes the samples denser and increases the metallization properties.