The quantum entangled photon-pair source,as an essential component of optical quantum systems,holds great potential for applications such as quantum teleportation,quan-tum computing,and quantum imaging.The current wor...The quantum entangled photon-pair source,as an essential component of optical quantum systems,holds great potential for applications such as quantum teleportation,quan-tum computing,and quantum imaging.The current workhorse technique for preparing photon pairs involves performing spon-taneous parametric down conversion(SPDC)in bulk nonlinear crystals.However,the current power consumption and cost of preparing entangled photon-pair sources are relatively high,pos-ing challenges to their integration and scalability.In this paper,we propose a low-power system model for the quantum entan-gled photon-pair source based on SPDC theory and phase matching technology.This model allows us to analyze the per-formance of each module and the influence of component cha-racteristics on the overall system.In our experimental setup,we utilize a 5 mW laser diode and a typical type-II barium metabo-rate(BBO)crystal to prepare an entangled photon-pair source.The experimental results are in excellent agreement with the model,indicating a significant step towards achieving the goal of low-power and low-cost entangled photon-pair sources.This achievement not only contributes to the practical application of quantum entanglement lighting,but also paves the way for the widespread adoption of optical quantum systems in the future.展开更多
The cavity-enhanced spontaneous parametric down-conversion far below threshold can be used to generate a narrow-band photon pair efficiently. Previous experiments on the cavity-enhanced spontaneous parametric down- co...The cavity-enhanced spontaneous parametric down-conversion far below threshold can be used to generate a narrow-band photon pair efficiently. Previous experiments on the cavity-enhanced spontaneous parametric down- conversion almost always utilize continuous wave pump light, but the pulse pumped case is rarely reported. One disadvantage of the continuous wave case is that the photon pair is produced randomly within the coherence time of the pump, which limits its application in the quantum information realm. However, a pulse pump can help to solve this problem. In this paper, we theoretically analyze pulse pumped cavity-enhanced spontaneous parametric down- conversion in detail and show how the pump pulse affects the multi-photon interference visibility, two-photon waveform, joint spectrum and spectral brightness.展开更多
文摘The quantum entangled photon-pair source,as an essential component of optical quantum systems,holds great potential for applications such as quantum teleportation,quan-tum computing,and quantum imaging.The current workhorse technique for preparing photon pairs involves performing spon-taneous parametric down conversion(SPDC)in bulk nonlinear crystals.However,the current power consumption and cost of preparing entangled photon-pair sources are relatively high,pos-ing challenges to their integration and scalability.In this paper,we propose a low-power system model for the quantum entan-gled photon-pair source based on SPDC theory and phase matching technology.This model allows us to analyze the per-formance of each module and the influence of component cha-racteristics on the overall system.In our experimental setup,we utilize a 5 mW laser diode and a typical type-II barium metabo-rate(BBO)crystal to prepare an entangled photon-pair source.The experimental results are in excellent agreement with the model,indicating a significant step towards achieving the goal of low-power and low-cost entangled photon-pair sources.This achievement not only contributes to the practical application of quantum entanglement lighting,but also paves the way for the widespread adoption of optical quantum systems in the future.
基金supported by the National Natural Science Foundation of China(Grant No.10874171)the National Basic Research Program of China(Grant No.2009CB929601)+1 种基金the Innovation Fund from Chinese Academy of Sciencesthe Program for New Century Excellent Talents in University of China(Grant No.NCET-07-0791)
文摘The cavity-enhanced spontaneous parametric down-conversion far below threshold can be used to generate a narrow-band photon pair efficiently. Previous experiments on the cavity-enhanced spontaneous parametric down- conversion almost always utilize continuous wave pump light, but the pulse pumped case is rarely reported. One disadvantage of the continuous wave case is that the photon pair is produced randomly within the coherence time of the pump, which limits its application in the quantum information realm. However, a pulse pump can help to solve this problem. In this paper, we theoretically analyze pulse pumped cavity-enhanced spontaneous parametric down- conversion in detail and show how the pump pulse affects the multi-photon interference visibility, two-photon waveform, joint spectrum and spectral brightness.