The efficacy of seven plant extracts(neem,fennel,lavender,thyme,pennyroyal,salvia and asafetida) in controlling postharvest of apple(caused by Botrytis cinerea) was evaluated in vitro and in vivo.In vitro,all plant ex...The efficacy of seven plant extracts(neem,fennel,lavender,thyme,pennyroyal,salvia and asafetida) in controlling postharvest of apple(caused by Botrytis cinerea) was evaluated in vitro and in vivo.In vitro,all plant extracts treatments inhibited spore germination.Inhibitory rates of pore germination was 17.41 and 20.83% for neem extract treatment(methanolic and aqueous extracts,respectively) with significant difference compared to control(73.6 and 85.33%) for aqueous and methanol extracts.In the storage conditions,the application of aqueous extract of neem(at concentration of 25%) resulted in 89.11% reduction of disease severity compared with the untreated control.Results of enzymes activity showed the plant extracts can increase the activity of peroxidase,phenylalanine ammonia-lyase,β-1,3-glucanase and polyphenol oxidase in the presence of pathogens,in apple fruits.However,the results of this research revealed that application of neem extracts was more effective than the application of other plant extracts.According to this study,it could be concluded that plant extracts may be useful to control postharvest disease as a safe alternative option to chemical fungicides.展开更多
<span style="font-family:'';font-size:10pt;"><span style="font-size:12px;font-family:Verdana;">Pathogenic spore-forming bacteria pose high risks to healthcare settings, as well ...<span style="font-family:'';font-size:10pt;"><span style="font-size:12px;font-family:Verdana;">Pathogenic spore-forming bacteria pose high risks to healthcare settings, as well as in the food and beverage industries. We reported recently that novel alcohol-based formulations containing plant-derived compounds, including epigallocatechin-3-gallate-palmitate (EGCG-P), a green tea polyphenol ester, provide > 99.99% inactivation of bacterial spores within 60 sec. Based on recently published data from our group and others, we hypothesize that a combination of EGCG-P and alcohol formulated with other plant-derived ingredients would achieve high sporicidal efficacy against a wide spectrum of bacterial spores and can provide novel hand hygiene methods against bacterial spores without toxicity. The objectives of the current study were to optimize </span><span style="font-size:12px;font-family:Verdana;">two novel formulations with combinations of glycerol, citric acid, and EGCG-P</span><span style="font-size:12px;font-family:Verdana;"> to increase sporicidal activity and explore the rapid inactivation mechanisms and suitability for sporicidal products with broad-spectrum activities against aerobic and anaerobic bacterial spores. Methods included suspension testing of two formulations against spores from </span><i><span style="font-size:12px;font-family:Verdana;">Bacillus cereus</span></i><span style="font-size:12px;font-family:Verdana;"> and </span><i><span style="font-size:12px;font-family:Verdana;">Clostridium sporogenes</span></i><span style="font-size:12px;font-family:Verdana;">, quantification of spore germination, and scanning electron microscopy. The results demonstrated that these novel formulations were able to reduce spore germination by >99.999% after 30 sec exposure in </span><span style="font-size:12px;font-family:Verdana;">suspension tests, and rapidly caused physical damage to the spores. Additional</span></span><span style="font-family:'';font-size:10pt;"> </span><span style="line-height:1.5;font-family:Verdana;">studies</span><span style="font-family:'';font-size:10pt;"> </span><span style="line-height:1.5;font-family:Verdana;">are </span><span style="line-height:1.5;font-family:Verdana;">warranted to determine the suitability of the novel formulations for future hand hygiene use.展开更多
Previous studies documented that most desert plants can be colonized by arbuscular mycorrhizal (AM) fungi, however, little is known about how the dynamics of AM fungi are related to ephemerals in desert ecosystems. ...Previous studies documented that most desert plants can be colonized by arbuscular mycorrhizal (AM) fungi, however, little is known about how the dynamics of AM fungi are related to ephemerals in desert ecosystems. The dynamics of AM fungi with desert ephemerals were examined to determine the effects of host plant life stages on the development of AM fungi. Mean colonization of ephemeral annual plants was 45% lower than that of ephemeral perennial plants. The colonizations were much higher in the early part of the growing season than in later parts, peaking at flowering times. The phenology of AM fungi in root systems varied among different ephem- erals. The density of AM fungal spores increased with the development of ephemeral annual plants, reached its maximum at flowering times, and then plateaued about 20 days after the aboveground senescence. A significant positive correlation was found between AM fungi spore density and biomass of ephemeral annual plants. The life cycles of AM fungi associated with desert ephemerals were very shod, being about 60-70 days. Soil temperature and water content had no direct influence on the development of AM fungal spores. We concluded that the development of AM fungi was in response to desert ephemeral phenology and life history strategy.展开更多
文摘The efficacy of seven plant extracts(neem,fennel,lavender,thyme,pennyroyal,salvia and asafetida) in controlling postharvest of apple(caused by Botrytis cinerea) was evaluated in vitro and in vivo.In vitro,all plant extracts treatments inhibited spore germination.Inhibitory rates of pore germination was 17.41 and 20.83% for neem extract treatment(methanolic and aqueous extracts,respectively) with significant difference compared to control(73.6 and 85.33%) for aqueous and methanol extracts.In the storage conditions,the application of aqueous extract of neem(at concentration of 25%) resulted in 89.11% reduction of disease severity compared with the untreated control.Results of enzymes activity showed the plant extracts can increase the activity of peroxidase,phenylalanine ammonia-lyase,β-1,3-glucanase and polyphenol oxidase in the presence of pathogens,in apple fruits.However,the results of this research revealed that application of neem extracts was more effective than the application of other plant extracts.According to this study,it could be concluded that plant extracts may be useful to control postharvest disease as a safe alternative option to chemical fungicides.
文摘<span style="font-family:'';font-size:10pt;"><span style="font-size:12px;font-family:Verdana;">Pathogenic spore-forming bacteria pose high risks to healthcare settings, as well as in the food and beverage industries. We reported recently that novel alcohol-based formulations containing plant-derived compounds, including epigallocatechin-3-gallate-palmitate (EGCG-P), a green tea polyphenol ester, provide > 99.99% inactivation of bacterial spores within 60 sec. Based on recently published data from our group and others, we hypothesize that a combination of EGCG-P and alcohol formulated with other plant-derived ingredients would achieve high sporicidal efficacy against a wide spectrum of bacterial spores and can provide novel hand hygiene methods against bacterial spores without toxicity. The objectives of the current study were to optimize </span><span style="font-size:12px;font-family:Verdana;">two novel formulations with combinations of glycerol, citric acid, and EGCG-P</span><span style="font-size:12px;font-family:Verdana;"> to increase sporicidal activity and explore the rapid inactivation mechanisms and suitability for sporicidal products with broad-spectrum activities against aerobic and anaerobic bacterial spores. Methods included suspension testing of two formulations against spores from </span><i><span style="font-size:12px;font-family:Verdana;">Bacillus cereus</span></i><span style="font-size:12px;font-family:Verdana;"> and </span><i><span style="font-size:12px;font-family:Verdana;">Clostridium sporogenes</span></i><span style="font-size:12px;font-family:Verdana;">, quantification of spore germination, and scanning electron microscopy. The results demonstrated that these novel formulations were able to reduce spore germination by >99.999% after 30 sec exposure in </span><span style="font-size:12px;font-family:Verdana;">suspension tests, and rapidly caused physical damage to the spores. Additional</span></span><span style="font-family:'';font-size:10pt;"> </span><span style="line-height:1.5;font-family:Verdana;">studies</span><span style="font-family:'';font-size:10pt;"> </span><span style="line-height:1.5;font-family:Verdana;">are </span><span style="line-height:1.5;font-family:Verdana;">warranted to determine the suitability of the novel formulations for future hand hygiene use.
基金funded by the National Natural Science Foundation of China (30770341)the International Fund for Agricultural Development (the WATERCOPE project,I-R-1284)
文摘Previous studies documented that most desert plants can be colonized by arbuscular mycorrhizal (AM) fungi, however, little is known about how the dynamics of AM fungi are related to ephemerals in desert ecosystems. The dynamics of AM fungi with desert ephemerals were examined to determine the effects of host plant life stages on the development of AM fungi. Mean colonization of ephemeral annual plants was 45% lower than that of ephemeral perennial plants. The colonizations were much higher in the early part of the growing season than in later parts, peaking at flowering times. The phenology of AM fungi in root systems varied among different ephem- erals. The density of AM fungal spores increased with the development of ephemeral annual plants, reached its maximum at flowering times, and then plateaued about 20 days after the aboveground senescence. A significant positive correlation was found between AM fungi spore density and biomass of ephemeral annual plants. The life cycles of AM fungi associated with desert ephemerals were very shod, being about 60-70 days. Soil temperature and water content had no direct influence on the development of AM fungal spores. We concluded that the development of AM fungi was in response to desert ephemeral phenology and life history strategy.