Total 72 lapped specimens including six different kinds of CR340 steel structures were prepared to study the influence of the spot welding technology on their fatigue characteristics.Fatigue test and group method were...Total 72 lapped specimens including six different kinds of CR340 steel structures were prepared to study the influence of the spot welding technology on their fatigue characteristics.Fatigue test and group method were employed and performed on each sample to obtain the fatigue experimental data of each structure under four stress levels.The results show that the spot welding technology had a notable impact on the fatigue performance of both the shear and tensile joints.It can significantly improve the fatigue strength of the structure,the consistency and repeatability of experimental data,as well as the stability and reliability of the structure under dynamic load environment.The shear spot welding structure demonstrates the best fatigue performance which is very important for wide application in engineering of this method.展开更多
Resistance multi-spot welding (MSW) in column, triangle and tetragonal symmetry arrangements was prepared using cold-rolled 301L high-strength sheets, and their static and fatigue properties were in- vestigated. The...Resistance multi-spot welding (MSW) in column, triangle and tetragonal symmetry arrangements was prepared using cold-rolled 301L high-strength sheets, and their static and fatigue properties were in- vestigated. The effects of spot welds on the fracture strengths and fatigue limits were discussed. The results show that the static strengths can be estimated using an inherent linear relationship formula of the load versus the welding area. It was based on the 28%-33% volume fraction of α′ martensite induced at the interfacial spot weld fracture because of the failure deformation. The fatigue limits of the MSW nonlin- early increase with the number of spot welds. The arrangement of spot welds in the MSW significantly affects the average fatigue limit of each spot weld; its 26% maximum reduction occurred in the triangle, and the interaction stress between spot welds led to its 18% reduction in the tetragonal symmetry. The calculated fatigue stress of all MSW loadings with their mean fatigue limits was 230-270 MPa.展开更多
基金Item Sponsored by National Natural Science Foundation of China(51375307,51275296)Key Discipline Team of China(AKZDXK2015C03)University Provincial Natural Science Research Project of Anhui Province of China(KJ2016A181)
文摘Total 72 lapped specimens including six different kinds of CR340 steel structures were prepared to study the influence of the spot welding technology on their fatigue characteristics.Fatigue test and group method were employed and performed on each sample to obtain the fatigue experimental data of each structure under four stress levels.The results show that the spot welding technology had a notable impact on the fatigue performance of both the shear and tensile joints.It can significantly improve the fatigue strength of the structure,the consistency and repeatability of experimental data,as well as the stability and reliability of the structure under dynamic load environment.The shear spot welding structure demonstrates the best fatigue performance which is very important for wide application in engineering of this method.
基金funded by the Scientific Research and Development Projects of China Railway Corporation(2011J105-B)
文摘Resistance multi-spot welding (MSW) in column, triangle and tetragonal symmetry arrangements was prepared using cold-rolled 301L high-strength sheets, and their static and fatigue properties were in- vestigated. The effects of spot welds on the fracture strengths and fatigue limits were discussed. The results show that the static strengths can be estimated using an inherent linear relationship formula of the load versus the welding area. It was based on the 28%-33% volume fraction of α′ martensite induced at the interfacial spot weld fracture because of the failure deformation. The fatigue limits of the MSW nonlin- early increase with the number of spot welds. The arrangement of spot welds in the MSW significantly affects the average fatigue limit of each spot weld; its 26% maximum reduction occurred in the triangle, and the interaction stress between spot welds led to its 18% reduction in the tetragonal symmetry. The calculated fatigue stress of all MSW loadings with their mean fatigue limits was 230-270 MPa.