In this paper,using the computational fluid dynamics based on Euler Lagrange and the commercial software Barracuda VR,the gas-particle hydrodynamics and the erosion of particles on the inner wall and internal componen...In this paper,using the computational fluid dynamics based on Euler Lagrange and the commercial software Barracuda VR,the gas-particle hydrodynamics and the erosion of particles on the inner wall and internal components of the spouted bed in the integrated multi-jet swirling spout-fluidized bed(IMSSFB)are studied.Erosion experiments have obtained the characterization of particle erosion on internal components and verified the relevant numerical models.The results show that:the particle distribution within the IMSSFB is uneven due to the cyclonic effect of the axial swirl vane(ASV),resulting in particle erosion for the ASV being concentrated on one side;when the gas reaches the top,too high an erosion gas velocity leads to gas backflow.As the filling height increases,there is a tendency for the erosion position of the particles on the ASV to expand upwards.However,the effect of increasing gas velocity on the erosion position is insignificant.展开更多
A three-dimensional Eulerian multiphase model, with closure law according to the kinetic theory of granular flow, was used to study the gas/solid flow behaviors in spout-fluid beds. The influences of the coefficient o...A three-dimensional Eulerian multiphase model, with closure law according to the kinetic theory of granular flow, was used to study the gas/solid flow behaviors in spout-fluid beds. The influences of the coefficient of restitution due to non-ideal particle collisions on the simulated results were tested. It is demonstrated that the simulated result is strongly affected by the coefficient of restitution. Comparison of simulations with experiments in a small spout-fluid bed showed that an appropriate coefficient of restitution of 0.93 was necessary to simulate the flow characteristics in an underdesigned large size of spout-fluid bed coal gasifier with diameter of lm and height of 6m. The internal jet and gas/solid flow patterns at different operating conditions were obtained. The simulations show that an optimal gas/solid flow pattern for coal gasification is found when the spouting gas flow rate is equal to the fluidizing gas flow rate and the total of them is two and a half times the minimum fluidizing gas flow rate. Besides, the radial distributions of particle velocity and gas velocity show similar tendencies; the radial distributions of particle phase pressure due to particle collisions and the particle pseudo-temperature corresponding to the macroscopic kinetic energy of the random particle motion also show similar tendencies. These indicate that both gas drag force and particle collisions dominate the movement of particles.展开更多
A laboratory-scale plasma spout-fluid bed reactor with a 10 kW DC plasma torch was developed and tested using quartz sand particle and rice hull. The preliminary experimental results including particle recirculation a...A laboratory-scale plasma spout-fluid bed reactor with a 10 kW DC plasma torch was developed and tested using quartz sand particle and rice hull. The preliminary experimental results including particle recirculation and attrition, bed temperature distribution and stability, as well as biomass gasification system energy balance were presented in this paper. Research results indicated that plasma spout-fluid bed reactor may be a technically feasible reactor for carbonaceous organic material gasification.展开更多
Spout-fluid beds are unique systems that require thorough study prior to their industrial application.In this study,the hydrodynamics of spout-fluid beds were investigated using 3D computational fluid dy-namics couple...Spout-fluid beds are unique systems that require thorough study prior to their industrial application.In this study,the hydrodynamics of spout-fluid beds were investigated using 3D computational fluid dy-namics coupled with discrete element method(CFD-DEM).Three flow regimes,including jet-in-fluidized bed,spouting-with-aeration,and intermediate/spout-fluidization were studied,and the particle mixing was quantified in these regimes using the Lacey mixing index.The results showed that both axial and lateral mixing rates are better in jet-in-fluidized bed and the spouting-with-aeration flow regimes,with the axial mixing being superior to the lateral in all flow regimes.Examining the diffusivity coefficient revealed that mixing in the jet-in-fluidized bed flow regime is better due to the formation and eruption of bubbles in the annulus.Additionally,the granular temperature was analyzed in all flow regimes,and higher particle velocity fluctuations were observed in the spouting-with-aeration and the jet-in-fluidized bed flow regimes due to the higher spout gas velocity and formation of bubbles in the annulus.This study provides valuable insights into the hydrodynamics of spout-fluid beds in different flow regimes,which can aid in the design and optimization of spout-fluid bed reactors for various industrial applications.展开更多
Effects of variable airflow on particle motion in spout-fluid beds are studied. Computational fluid dynam- ics using Navier-Stokes equations for the gas phase coupled with the discrete element method using Newton's l...Effects of variable airflow on particle motion in spout-fluid beds are studied. Computational fluid dynam- ics using Navier-Stokes equations for the gas phase coupled with the discrete element method using Newton's laws for the solid phase have been employed. Results indicate that increasing the fluidizing velocity diminishes dead zones and increases both the total height of the bed and the traversed distance by particles in the steady spout-fluid bed. In pulsed airfows, two configurations are investigated, namely, the spouted pulsed-fluidized bed with pulsed flow of the fluidizing velocity, and the pulsed-spouted flu- idized bed with pulsed flow of the spouting velocity. The positive effect of pulsation on particle motion is shown and the effects of parameters, such as amplitude and frequency, on the dynamics of the bed are investigated in each configuration. An increase of up to 19% in traversed distance is found for the range studied, which suggests flow pulsation as a promising technique for increasing particle mixing in spout-fluid beds.展开更多
Five main flow regimes in spout-fluidized bed were identified in this study, namely, fixed bed, spout with aeration, spout-fluidization, jet in fluidized bed and slugging, together with their corresponding major frequ...Five main flow regimes in spout-fluidized bed were identified in this study, namely, fixed bed, spout with aeration, spout-fluidization, jet in fluidized bed and slugging, together with their corresponding major frequencies translated from pressure signals. The empirical equation A=aB^b, in which A=Fr^*I(HIDi) and B=(Fr^*I(HIDi))/(Ugt/Umf) are respectively the spout-geometry and spout-geometry-fluidization dimensionless numbers, was proposed to distinguish these flow regimes.展开更多
The intensity of the electrostatic charge accumulated during the flow of Cellets^■ particles in a modified Wurster apparatus is investigated in terms of the bed mass, and the initial moisture and velocity of the spou...The intensity of the electrostatic charge accumulated during the flow of Cellets^■ particles in a modified Wurster apparatus is investigated in terms of the bed mass, and the initial moisture and velocity of the spouting gas. Particle electrification is proportional to the increase in the velocity of the spouting gas, which is connected with a higher velocity of the cores and the strength of their impact on the walls of the device. The presence of moisture in the bed facilitates electrification, but does not affect circulation, since moisture simultaneously lowers the bed resistance and reduces the relaxation time of particles, leading to rapid discharging if brought into contact with the conducting elements of the apparatus. Therefore, with regard to classic dry-powder coating, the velocity of the spouting gas should be minimized to ensure good circulation, with the particle moisture held at the maximum level admissible for a given product. The investigations show that a unique construction of the apparatus, which brings about an intense natural electrification of the cores, makes it suitable for the electrostatic dry-coating process by means of a high-voltage feeder with the controlled charging of coating powder in the spray nozzle.展开更多
基金supported by the National Natural Science Foundation of China(22178286)Shaanxi Qin Chuangyuan“scientist and engineer”team construction project(2022KXJ-041)。
文摘In this paper,using the computational fluid dynamics based on Euler Lagrange and the commercial software Barracuda VR,the gas-particle hydrodynamics and the erosion of particles on the inner wall and internal components of the spouted bed in the integrated multi-jet swirling spout-fluidized bed(IMSSFB)are studied.Erosion experiments have obtained the characterization of particle erosion on internal components and verified the relevant numerical models.The results show that:the particle distribution within the IMSSFB is uneven due to the cyclonic effect of the axial swirl vane(ASV),resulting in particle erosion for the ASV being concentrated on one side;when the gas reaches the top,too high an erosion gas velocity leads to gas backflow.As the filling height increases,there is a tendency for the erosion position of the particles on the ASV to expand upwards.However,the effect of increasing gas velocity on the erosion position is insignificant.
基金Supported by the National Key Program of Basic Research in China (No.2004CB217702, No.2005CB221202, No.2006CB20030201) and the National Natural Science Foundation of China (No.20590367, No.50676021, No.50606006).
文摘A three-dimensional Eulerian multiphase model, with closure law according to the kinetic theory of granular flow, was used to study the gas/solid flow behaviors in spout-fluid beds. The influences of the coefficient of restitution due to non-ideal particle collisions on the simulated results were tested. It is demonstrated that the simulated result is strongly affected by the coefficient of restitution. Comparison of simulations with experiments in a small spout-fluid bed showed that an appropriate coefficient of restitution of 0.93 was necessary to simulate the flow characteristics in an underdesigned large size of spout-fluid bed coal gasifier with diameter of lm and height of 6m. The internal jet and gas/solid flow patterns at different operating conditions were obtained. The simulations show that an optimal gas/solid flow pattern for coal gasification is found when the spouting gas flow rate is equal to the fluidizing gas flow rate and the total of them is two and a half times the minimum fluidizing gas flow rate. Besides, the radial distributions of particle velocity and gas velocity show similar tendencies; the radial distributions of particle phase pressure due to particle collisions and the particle pseudo-temperature corresponding to the macroscopic kinetic energy of the random particle motion also show similar tendencies. These indicate that both gas drag force and particle collisions dominate the movement of particles.
文摘A laboratory-scale plasma spout-fluid bed reactor with a 10 kW DC plasma torch was developed and tested using quartz sand particle and rice hull. The preliminary experimental results including particle recirculation and attrition, bed temperature distribution and stability, as well as biomass gasification system energy balance were presented in this paper. Research results indicated that plasma spout-fluid bed reactor may be a technically feasible reactor for carbonaceous organic material gasification.
文摘Spout-fluid beds are unique systems that require thorough study prior to their industrial application.In this study,the hydrodynamics of spout-fluid beds were investigated using 3D computational fluid dy-namics coupled with discrete element method(CFD-DEM).Three flow regimes,including jet-in-fluidized bed,spouting-with-aeration,and intermediate/spout-fluidization were studied,and the particle mixing was quantified in these regimes using the Lacey mixing index.The results showed that both axial and lateral mixing rates are better in jet-in-fluidized bed and the spouting-with-aeration flow regimes,with the axial mixing being superior to the lateral in all flow regimes.Examining the diffusivity coefficient revealed that mixing in the jet-in-fluidized bed flow regime is better due to the formation and eruption of bubbles in the annulus.Additionally,the granular temperature was analyzed in all flow regimes,and higher particle velocity fluctuations were observed in the spouting-with-aeration and the jet-in-fluidized bed flow regimes due to the higher spout gas velocity and formation of bubbles in the annulus.This study provides valuable insights into the hydrodynamics of spout-fluid beds in different flow regimes,which can aid in the design and optimization of spout-fluid bed reactors for various industrial applications.
文摘Effects of variable airflow on particle motion in spout-fluid beds are studied. Computational fluid dynam- ics using Navier-Stokes equations for the gas phase coupled with the discrete element method using Newton's laws for the solid phase have been employed. Results indicate that increasing the fluidizing velocity diminishes dead zones and increases both the total height of the bed and the traversed distance by particles in the steady spout-fluid bed. In pulsed airfows, two configurations are investigated, namely, the spouted pulsed-fluidized bed with pulsed flow of the fluidizing velocity, and the pulsed-spouted flu- idized bed with pulsed flow of the spouting velocity. The positive effect of pulsation on particle motion is shown and the effects of parameters, such as amplitude and frequency, on the dynamics of the bed are investigated in each configuration. An increase of up to 19% in traversed distance is found for the range studied, which suggests flow pulsation as a promising technique for increasing particle mixing in spout-fluid beds.
基金supported by the National Natural Science Foundation of China(20376014)Fujian Science and Technology Council Grant HG99-01.
文摘Five main flow regimes in spout-fluidized bed were identified in this study, namely, fixed bed, spout with aeration, spout-fluidization, jet in fluidized bed and slugging, together with their corresponding major frequencies translated from pressure signals. The empirical equation A=aB^b, in which A=Fr^*I(HIDi) and B=(Fr^*I(HIDi))/(Ugt/Umf) are respectively the spout-geometry and spout-geometry-fluidization dimensionless numbers, was proposed to distinguish these flow regimes.
文摘The intensity of the electrostatic charge accumulated during the flow of Cellets^■ particles in a modified Wurster apparatus is investigated in terms of the bed mass, and the initial moisture and velocity of the spouting gas. Particle electrification is proportional to the increase in the velocity of the spouting gas, which is connected with a higher velocity of the cores and the strength of their impact on the walls of the device. The presence of moisture in the bed facilitates electrification, but does not affect circulation, since moisture simultaneously lowers the bed resistance and reduces the relaxation time of particles, leading to rapid discharging if brought into contact with the conducting elements of the apparatus. Therefore, with regard to classic dry-powder coating, the velocity of the spouting gas should be minimized to ensure good circulation, with the particle moisture held at the maximum level admissible for a given product. The investigations show that a unique construction of the apparatus, which brings about an intense natural electrification of the cores, makes it suitable for the electrostatic dry-coating process by means of a high-voltage feeder with the controlled charging of coating powder in the spray nozzle.