期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
导向管喷动流化床内颗粒停留时间模型 被引量:6
1
作者 陈明强 颜涌捷 +1 位作者 任铮伟 毛元夫 《化工学报》 EI CAS CSCD 北大核心 1998年第5期586-591,共6页
通过对导向管喷动流化床的喷动区和流化区分别进行质量平衡和动量平衡,得出了描述连续流动条件下其床层内粒子停留时间的数学模型。本模型所得计算结果与以前报道的实验结果一致。
关键词 喷动流化床 停留时间 导向管 模型
下载PDF
内置水平管振动流化床停留时间分布模型 被引量:3
2
作者 王锐思 叶世超 +3 位作者 范辞冬 罗小燕 祝杰 马岩龙 《化学反应工程与工艺》 CAS CSCD 北大核心 2010年第5期399-405,共7页
采用理论分析和实验研究相结合的方法研究了内置水平管的振动流化床停留时间分布密度。在带内置水平管的二维振动流化床内,以米粒为实验物料进行停留时间分布的实验研究,考察了振动强度、气速、进料流率对流化床内停留时间分布的影响。... 采用理论分析和实验研究相结合的方法研究了内置水平管的振动流化床停留时间分布密度。在带内置水平管的二维振动流化床内,以米粒为实验物料进行停留时间分布的实验研究,考察了振动强度、气速、进料流率对流化床内停留时间分布的影响。实验表明,降低振动强度、入口气速和提高进料流率可使停留时间分布相对集中。对实验用流化床内颗粒流动样式的分析,建立了停留时间分布密度函数模型,并将模型预测与实验结果进行了对比,误差在20%以内。 展开更多
关键词 动流化床 内置水平管 停留时间分布 数学模型
下载PDF
Comparison of artificial neural networks with empirical correlations for estimating the average cycle time in conical spouted beds 被引量:1
3
作者 I. Estiatia M. Tellabidea +4 位作者 J.F. Saldarriaga H. Altzibara F.B. Freirec J.T. Freirec M. Olazara 《Particuology》 SCIE EI CAS CSCD 2019年第1期48-57,共10页
Conventional spouted beds have been extensively used in many real-life applications but are not suited for all types of materials, especially fine particles, which require internal devices to improve their motion in t... Conventional spouted beds have been extensively used in many real-life applications but are not suited for all types of materials, especially fine particles, which require internal devices to improve their motion in the spouted bed. However, unlike conventional spouted beds, there are almost no mechanistic or empirical models available for the design of spouted beds with internals. Given the availability of an extensive but not experimentally designed database, the main purpose of this study is to present an analysis of neural networks and empirical models in terms of their suitability to fit and predict average cycle times in conical spouted beds with and without draft tubes. The parameters investigated are particle size, density, contactor angle, gas inlet diameter, static bed height, and draft tube features. Although the amount of information is always a key factor when fitting models, the size of the database used in this study strongly affects the fitting performance of empirical models, whereas artificial neural networks are more influenced by how the data are scaled. Results of model verification show that both techniques are suitable for predicting average cycle times for data outside the range covered by the database. 展开更多
关键词 Empirical correlation Artificial neural network AVERAGE CYCLE time Conical spouted bed draft tubeS modeling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部