In order to reduce the risk of spontaneous combustion in goaf during goaf excavation process, polymer modified cement mortar spraying material was used to spray and seal the roadway surface. The experimental applicati...In order to reduce the risk of spontaneous combustion in goaf during goaf excavation process, polymer modified cement mortar spraying material was used to spray and seal the roadway surface. The experimental application was carried out in the upper channel 2304 of a mine in Henan Province. The test results showed that polymer modified cement mortar spraying material could effectively support the roadway and greatly reduce the deformation rate of the roadway. The best spraying thickness is 5 mm. Through the monitoring of tunnel air leakage, it is concluded that the polymer modified cement mortar spraying material can reduce the tunnel air leakage and play a better sealing effect.展开更多
The mechansim of the effect of rare earth(RE)on wearability of spray-welding layers has been investi- gated by adding RE in ppm into Nickel base self-fluxing alloy powder.The test results show that the microalloy- ing...The mechansim of the effect of rare earth(RE)on wearability of spray-welding layers has been investi- gated by adding RE in ppm into Nickel base self-fluxing alloy powder.The test results show that the microalloy- ing effect of RE can refine the structure of spray-welding layers,and change the amount,size,shape and distri- bution of hard phase in spray-welding layers.The wearability of spray-welding layers is increased consequently.展开更多
In this study we report a series of nickel-rich layered cathodes LiNi1-2xCoxMnxO2(x = 0.075, 0.05,0.025) prepared from chlorides solution via ultrasonic spray pyrolysis. SEM images illustrate that the samples are su...In this study we report a series of nickel-rich layered cathodes LiNi1-2xCoxMnxO2(x = 0.075, 0.05,0.025) prepared from chlorides solution via ultrasonic spray pyrolysis. SEM images illustrate that the samples are submicron-sized particles and the particle sizes increase with the increase of Ni content.LiNi0.85Co0.075Mn0.075O2 delivers a discharge capacity of 174.9 mAh g-1 with holding 93% reversible capacity at 1 C after 80 cycles, and can maintain a discharge capacity of 175.3 mAh g-1 at 5 C rate. With increasing Ni content, the initial specific capacity increases while the cycling and rate performance degrades in some extent. These satisfying results demonstrate that spray pyrolysis is a powerful and efficient synthesis technology for producing Ni-rich layered cathode(Ni content 〉 80%).展开更多
Ba0.6Sr0.4TiO3 (BST) thin films with and without HfO 2 buffer layer were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Dependences of HfO 2 thickness on the dielectric property and leakage curre...Ba0.6Sr0.4TiO3 (BST) thin films with and without HfO 2 buffer layer were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Dependences of HfO 2 thickness on the dielectric property and leakage current of BST thin films were focused. The dielectric constant of BST thin films increased and then decreased with the increase of HfO 2 thickness, while the dielectric relaxation was gradually improved. The loss tangent and leakage current under positive bias decreased with the HfO 2 thickness increasing. The leakage current analysis based on the Schottky emission indicated an improvement of the BST/Pt interface with HfO 2 buffer layer. The loss tangent, tunability and figure of merit of optimized HfO 2 buffered BST thin film achieved 0.009 8, 21.91% (E max = 200 kV/cm), 22.40 at 10 6 Hz, respectively.展开更多
By introducing a wave-induced component and a spray-induced component to the total stress, a mathematical model based on the Ekman theory is proposed to detail the influence of wind-driven waves and ocean spray on the...By introducing a wave-induced component and a spray-induced component to the total stress, a mathematical model based on the Ekman theory is proposed to detail the influence of wind-driven waves and ocean spray on the momentum transport in a marine atmosphere boundary layer(MABL). An analytic solution of the modified Ekman model can be obtained. The effect of the wave-induced stress is evaluated by a wind wave spectrum and a wave growth rate. It is found that the wave-induced stress and spray stress have a small impact compared with the turbulent stress on the drag coefficient and the wind profiles for low-to-medium wind speed. The spray contribution to the surface stress should be much more taken into account than the winddriven waves when the wind speed reaches above 25 m/s through the action of a "spray stress". As a result, the drag coefficient starts to decrease with increasing wind speed for high wind speed. The effects of the winddriven waves and spray droplets on the near-surface wind profiles are illustrated for different wave ages, which indicates that the production of the spray droplets leads the wind velocity to increase in the MABL. The solutions are also compared with the existed field observational data. Illustrative examples and the comparisons between field observations and the theoretical solutions demonstrate that the spray stress has more significant effect on the marine atmosphere boundary layer in the condition of the high wind speed compared with wave-induced stress.展开更多
A double-tapered AlGaN electron blocking layer (EBL) is proposed to apply in a deep ultraviolet semiconductor laser diode. Compared with the inverse double-tapered EBL, the laser with the double-tapered EBL shows a hi...A double-tapered AlGaN electron blocking layer (EBL) is proposed to apply in a deep ultraviolet semiconductor laser diode. Compared with the inverse double-tapered EBL, the laser with the double-tapered EBL shows a higher slope efficiency, which indicates that effective enhancement in the transportation of electrons and holes is achieved. Particularly, comparisons among the double-tapered EBL, the inverse double-tapered EBL, the singletapered EBL and the inverse single-tapered EBL show that the double-tapered EBL has the best performance in terms of current leakage.展开更多
Solution and quenching heat treatments are generally carried out in a roller hearth furnace for large-scale thick aluminum alloy plates.However,the asymmetric or uneven spray water flow rate is inevitable under indust...Solution and quenching heat treatments are generally carried out in a roller hearth furnace for large-scale thick aluminum alloy plates.However,the asymmetric or uneven spray water flow rate is inevitable under industrial production conditions,which leads to an asymmetric residual stress distribution.The spray quenching treatment was conducted on self-designed spray equipment,and the residual stress along the thickness direction was measured by a layer removal method based on deflections.Under the asymmetric spray quenching condition,the subsurface stress of the high-flow rate surface was lower than that of the low-flow rate surface,and the difference between the two subsurface stresses increased with the increase in the difference in water flow rates.The subsurface stress underneath the surface with a water flow rate of 0.60 m^(3)/h was 15.38 MPa less than that of 0.15 m^(3)/h.The simulated residual stress by finite element(FE)method of the high heat transfer coefficient(HTC)surface was less than that of the low HTC surface,which is consistent with the experimental results.The FE model can be used to analyze the strain and stress evolution and predict the quenched stress magnitude and distribution.展开更多
The molten salt leakage accident is an important issue in the nuclear safety analysis of molten salt reactors.While the molten salt leaks from the pipeline or storage tank,it will contact the insulation layer outside;...The molten salt leakage accident is an important issue in the nuclear safety analysis of molten salt reactors.While the molten salt leaks from the pipeline or storage tank,it will contact the insulation layer outside;hence,the processes of penetration and spreading play an important role in the development of leakage accidents.In this study,the penetration and diffusion of leaking molten salt(LMS)in an aluminum silicate fiber(ASF)thermal insulation layer were studied experimentally.A molten salt tank with an adjustable outlet was designed to simulate the leakage of molten salt,and the subsequent behavior in the thermal insulation layer was evaluated by measuring the penetra-tion time and penetration mass of the LMS.The results show that when the molten salt discharges from the outlet and reaches the thermal insulation layer,the LMS will penetrate and seep out from the ASF,and a higher flow rate of LMS requires less penetration time and leaked mass of LMS.As the temperature of the LMS and thickness of the ASF increased,the penetration time became longer and the leaked mass became greater at a lower LMS flow rate;when the LMS flow rate increased,the penetration time and leaked mass decreased rapidly and tended to flatten.展开更多
The thermal barrier coatings with NiCrAlY alloy bonding layer, NiCrAlY Y 2O 3 stabilized ZrO 2 transition layer and Y 2O 3 stabilized ZrO 2 ceramic layer are prepared on nickel alloy substrates using the plasma spray ...The thermal barrier coatings with NiCrAlY alloy bonding layer, NiCrAlY Y 2O 3 stabilized ZrO 2 transition layer and Y 2O 3 stabilized ZrO 2 ceramic layer are prepared on nickel alloy substrates using the plasma spray technique. The relationship among the composition, structure and property of the coatings are investiga ted by means of optical microscope, scanning electronic microscope and the experiments of thermal shock resistance cycling and high temperature oxidation resistance. The results show that the structure design of introdu cing a transition layer between Ni alloy substrate and ZrO 2 ceramic coating guarantees the high quality and properties of the coatings; ZrO 2 coatings doped with a little SiO 2 possesses better thermal shock resistance and more excellent hot corrosion resistance as compared with ZrO 2 coating materials without SiO 2 ;the improvement in performance of ZrO 2 coating doped with SiO 2 is due to forming more dense coating structure by self closing effects of the flaws and pores in the ZrO 2 coatings.展开更多
The thermoelastic behaviors of such as temperature distribution, displacements, and stresses in thermal barrier coatings (TBC) are seriously influenced by top coat thickness and edge conditions. The top coat of TBC sp...The thermoelastic behaviors of such as temperature distribution, displacements, and stresses in thermal barrier coatings (TBC) are seriously influenced by top coat thickness and edge conditions. The top coat of TBC specimens prepared with TriplexPro?-200 system was controlled by changing the processing parameter and feedstock, showing the various thicknesses and microstructures. A couple of governing partial differential equations were derived based on the thermoelastic theory. Since the governing equations were too involved to solve analytically, a finite volume method was developed to obtain approximations. The thermoelastic behaviors of TBC specimens with the various thicknesses and microstructures were estimated through mathematical approaches with different edge conditions. The results demonstrated that the microstructure and thickness of the top coat, and the edge condition in theoretical analysis were crucial factors to be considered in controlling the thermoelastic characteristics of plasma-sprayed TBCs.展开更多
The graphene oxide powder(GOP)obtained from the spray drying process often exhibits poor redispersibility which is considered due to the partial reduction of GO sheets.The reduction of drying temperature can effective...The graphene oxide powder(GOP)obtained from the spray drying process often exhibits poor redispersibility which is considered due to the partial reduction of GO sheets.The reduction of drying temperature can effectively increase the redispersibility of GOP,but result in a decreased drying efficiency.Herein,we found that the redispersibility of GOP is strongly affected by its microstructure,which is determined by the feed concentration.With the increase of feed concentration,the GO nanosheet assembly varies from the disordered stacking to relatively oriented assembly,making the morphology of the GOP transform from balllike(the most crumpled one)to flakelike(the least crumpled one),and the 0.8 mgml 1 is the threshold concentration for the morphology,structure,and redispersibility change.Once the feed concentration reaches 0.8 mg ml 1,the appearance of the nematic phase in droplet ensures the relatively oriented assembly of GO sheets to form the layered structure with a low crumpling degree,which greatly improves the polar parts surface tension of the solid GOP,making the GOP easier to form hydrogen bonding with water during the redispersion process,thus stabilizing dispersion.This work provides useful information for understanding the relationships between the morphology,microstructure,and final redispersibility of GOPs.展开更多
The retarded kinetics of oxygen evolution on electrodes is a bottleneck for electrochemical energy conversion and storage systems.NiFe-based electrocatalysts provide a cost-effective choice to confront this challenge....The retarded kinetics of oxygen evolution on electrodes is a bottleneck for electrochemical energy conversion and storage systems.NiFe-based electrocatalysts provide a cost-effective choice to confront this challenge.However,there is a lack of facile techniques for depositing compact catalytic films of high coverage and possessing a state-of-the-art performance,which is especially desired in photoelectrochemical(PEC)systems.Herein,we demonstrate a spray pyrolysis(SP)route to address this issue,featuring the kinetic selective preparation towards the desired catalytic-active material.Differing from reported SP protocols which only produce inactive oxides,this approach directly generates a unique composite film consisting of NiFe layered oxyhydroxides and amorphous oxides,exhibiting an overpotential as small as 255 mV(10 mA cm^(−2))and a turnover frequency of∼0.4 s^(−1)per metal atom.By using such a facile protocol,the surface rate-limiting issue of BiVO_(4)photoanodes can be effectively resolved,resulting in a charge injection efficiency of over 90%.Considering this deposition directly start from simple nitrates but only takes several seconds to complete,we believe it can be developed as a widely applicable and welcomed functionalization technique for diverse electrochemical devices.展开更多
A combination of methods was developed that can determine hydrodynamic forces on a planing hull in steady motion.Firstly,a potential-based boundary-element method was used to calculate the hydrodynamic pressure,induce...A combination of methods was developed that can determine hydrodynamic forces on a planing hull in steady motion.Firstly,a potential-based boundary-element method was used to calculate the hydrodynamic pressure,induced resistance and lift.Then the frictional resistance component was determined by the viscous boundary layer theory.Finally,a particular empirical technique was applied.to determine the region of upwash geometry and determine spray resistance.Case studies involving four models of Series 62 planing craft were run.These showed that the suggested method is efficient and capable,with results that are in good agreement with experimental measurements over a wide range of volumetric Froude numbers.展开更多
The photovoltaic performance of perovskite solar cells(PSCs)can be improved by utilizing efficient front contact.However,it has always been a significant challenge for fabricating high-quality,scalable,controllable,an...The photovoltaic performance of perovskite solar cells(PSCs)can be improved by utilizing efficient front contact.However,it has always been a significant challenge for fabricating high-quality,scalable,controllable,and cost-effective front contact.This study proposes a realistic multi-layer front contact design to realize efficient single-junction PSCs and perovskite/perovskite tandem solar cells(TSCs).As a critical part of the front contact,we prepared a highly compact titanium oxide(TiO2)film by industrially viable Spray Pyrolysis Deposition(SPD),which acts as a potential electron transport layer(ETL)for the fabrication of PSCs.Optimization and reproducibility of the TiO2 ETL were discreetly investigated while fabricating a set of planar PSCs.As the front contact has a significant influence on the optoelectronic properties of PSCs,hence,we investigated the optics and electrical effects of PSCs by three-dimensional(3D)finite-difference time-domain(FDTD)and finite element method(FEM)rigorous simulations.The investigation allows us to compare experimental results with the outcome from simulations.Furthermore,an optimized single-junction PSC is designed to enhance the energy conversion efficiency(ECE)by>30% compared to the planar reference PSC.Finally,the study has been progressed to the realization of all-perovskite TSC that can reach the ECE,exceeding 30%.Detailed guidance for the completion of high-performance PSCs is provided.展开更多
In order to clarify how groundwater leakage and river runoff occur in a catchment under tectonic movement, the water balance was estimated in the forested (88.3% in area) Oikamanai River catchment (area, 62.6 km2), Ho...In order to clarify how groundwater leakage and river runoff occur in a catchment under tectonic movement, the water balance was estimated in the forested (88.3% in area) Oikamanai River catchment (area, 62.6 km2), Hokkaido, Japan. The catchment’s geology is early Miocene to Pliocene sedimentary bedrock of partly high permeability, accompanied by currently active faults. Daily evapotranspiration, E, in water balance was calculated by applying the one-layer model to meteorological data in the rainfall season of 2011 and 2012, with the topographic influence on heat balance of the catchment considered. The coupling with the short-term water balance method for river runoff events allows us to estimate groundwater leaking to the other catchments through the faults and bedrock. As a result, the leakage corresponded to 50% - 80% of effective rainfall (=P - E: P, rainfall) in 2011, whereas it was lower or negative in 2012. The estimate of leakage then included variability of ca. 80%. In 2012, shallow groundwater storage seems to retain high baseflow during non-rainfall.展开更多
High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium ...High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated.展开更多
At the interface between the lower atmosphere and sea surface,sea spray might significantly influence air-sea heat fluxes and subsequently,modulate upper ocean temperature during a typhoon passage. The effects of sea ...At the interface between the lower atmosphere and sea surface,sea spray might significantly influence air-sea heat fluxes and subsequently,modulate upper ocean temperature during a typhoon passage. The effects of sea spray were introduced into the parameterization of sea surface roughness in a 1-D turbulent model,to investigate the effects of sea spray on upper ocean temperature in the Kuroshio Extension area,for the cases of two real typhoons from 2006,Yagi and Soulik. Model output was compared with data from the Kuroshio Extension Observatory(KEO),and Reynolds and AMSRE satellite remote sensing sea surface temperatures. The results indicate drag coefficients that include the spray effect are closer to observations than those without,and that sea spray can enhance the heat fluxes(especially latent heat flux) considerably during a typhoon passage. Consequently,the model results with heat fluxes enhanced by sea spray simulate better the cooling process of the SST and upper-layer temperature profiles. Additionally,results from the simulation of the passage of typhoon Soulik(that passed KEO quickly),which included the sea spray effect,were better than for the simulated passage of typhoon Yagi(that crossed KEO slowly). These promising 1-D results could provide insight into the application of sea spray in general circulation models for typhoon studies.展开更多
SiC particulate reinforced 6066 aluminium alloy metal matrix composites (MMCs) were prepared by multi layer spray forming. The preparation technology and process parameters were discussed. It is shown that SiC particu...SiC particulate reinforced 6066 aluminium alloy metal matrix composites (MMCs) were prepared by multi layer spray forming. The preparation technology and process parameters were discussed. It is shown that SiC particulate can be continuously and evenly fed and co deposited in the spray forming process. The reciprocally scanning movement of spraying system can make the SiC particulates distribute homogeneously in the composite. The ratio of SiC particulates captured by the metal matrix is influenced by process parameters, especially the metal flow rate. 6066/SiC p composite preforms of d 300 mm×540 mm and tubes with a size of up to d 650/ d 300 mm×1 000 mm were made by the same process. After extrusion and T6 heat treatment, the multi layer spray deposited 6066/SiC p composites can achieve improved properties. [展开更多
文摘In order to reduce the risk of spontaneous combustion in goaf during goaf excavation process, polymer modified cement mortar spraying material was used to spray and seal the roadway surface. The experimental application was carried out in the upper channel 2304 of a mine in Henan Province. The test results showed that polymer modified cement mortar spraying material could effectively support the roadway and greatly reduce the deformation rate of the roadway. The best spraying thickness is 5 mm. Through the monitoring of tunnel air leakage, it is concluded that the polymer modified cement mortar spraying material can reduce the tunnel air leakage and play a better sealing effect.
文摘The mechansim of the effect of rare earth(RE)on wearability of spray-welding layers has been investi- gated by adding RE in ppm into Nickel base self-fluxing alloy powder.The test results show that the microalloy- ing effect of RE can refine the structure of spray-welding layers,and change the amount,size,shape and distri- bution of hard phase in spray-welding layers.The wearability of spray-welding layers is increased consequently.
基金financial support of the National Basic Research Program of China (2014CB643406)the National Natural Science Foundation of China (51674296, 51704332)+1 种基金the National Postdoctoral Program for Innovative Talents (BX201700290)the Fundamental Research Funds for the Central Universities of Central South University (2017zzts125)
文摘In this study we report a series of nickel-rich layered cathodes LiNi1-2xCoxMnxO2(x = 0.075, 0.05,0.025) prepared from chlorides solution via ultrasonic spray pyrolysis. SEM images illustrate that the samples are submicron-sized particles and the particle sizes increase with the increase of Ni content.LiNi0.85Co0.075Mn0.075O2 delivers a discharge capacity of 174.9 mAh g-1 with holding 93% reversible capacity at 1 C after 80 cycles, and can maintain a discharge capacity of 175.3 mAh g-1 at 5 C rate. With increasing Ni content, the initial specific capacity increases while the cycling and rate performance degrades in some extent. These satisfying results demonstrate that spray pyrolysis is a powerful and efficient synthesis technology for producing Ni-rich layered cathode(Ni content 〉 80%).
基金Project supported by the Foundation of the Education Commission of Shanghai Municipality (Grant Nos.07ZZ14, 08SG41)the National Natural Science Foundation of China (Grant No.50711130241)the Shanghai Rising Star Program (GrantNo.08QH14008)
文摘Ba0.6Sr0.4TiO3 (BST) thin films with and without HfO 2 buffer layer were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Dependences of HfO 2 thickness on the dielectric property and leakage current of BST thin films were focused. The dielectric constant of BST thin films increased and then decreased with the increase of HfO 2 thickness, while the dielectric relaxation was gradually improved. The loss tangent and leakage current under positive bias decreased with the HfO 2 thickness increasing. The leakage current analysis based on the Schottky emission indicated an improvement of the BST/Pt interface with HfO 2 buffer layer. The loss tangent, tunability and figure of merit of optimized HfO 2 buffered BST thin film achieved 0.009 8, 21.91% (E max = 200 kV/cm), 22.40 at 10 6 Hz, respectively.
基金The National Natural Science Foundations of China under contract Nos 41576013 and 11362012the National High Technology Research and Development Program(863 Program)of China under contract No.2013AA122803the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010104
文摘By introducing a wave-induced component and a spray-induced component to the total stress, a mathematical model based on the Ekman theory is proposed to detail the influence of wind-driven waves and ocean spray on the momentum transport in a marine atmosphere boundary layer(MABL). An analytic solution of the modified Ekman model can be obtained. The effect of the wave-induced stress is evaluated by a wind wave spectrum and a wave growth rate. It is found that the wave-induced stress and spray stress have a small impact compared with the turbulent stress on the drag coefficient and the wind profiles for low-to-medium wind speed. The spray contribution to the surface stress should be much more taken into account than the winddriven waves when the wind speed reaches above 25 m/s through the action of a "spray stress". As a result, the drag coefficient starts to decrease with increasing wind speed for high wind speed. The effects of the winddriven waves and spray droplets on the near-surface wind profiles are illustrated for different wave ages, which indicates that the production of the spray droplets leads the wind velocity to increase in the MABL. The solutions are also compared with the existed field observational data. Illustrative examples and the comparisons between field observations and the theoretical solutions demonstrate that the spray stress has more significant effect on the marine atmosphere boundary layer in the condition of the high wind speed compared with wave-induced stress.
基金Supported by the National Key Research and Development Program under Grant No 2016YFE0118400the Key Project of Science and Technology of Henan Province under Grant No 172102410062+1 种基金the National Natural Science Foundation of China under Grant No 61176008the National Natural Science Foundation of China Henan Provincial Joint Fund Key Project under Grant No U1604263
文摘A double-tapered AlGaN electron blocking layer (EBL) is proposed to apply in a deep ultraviolet semiconductor laser diode. Compared with the inverse double-tapered EBL, the laser with the double-tapered EBL shows a higher slope efficiency, which indicates that effective enhancement in the transportation of electrons and holes is achieved. Particularly, comparisons among the double-tapered EBL, the inverse double-tapered EBL, the singletapered EBL and the inverse single-tapered EBL show that the double-tapered EBL has the best performance in terms of current leakage.
基金financially supported by the National Key Research and Development Program of China(No.2020YFF0218200)。
文摘Solution and quenching heat treatments are generally carried out in a roller hearth furnace for large-scale thick aluminum alloy plates.However,the asymmetric or uneven spray water flow rate is inevitable under industrial production conditions,which leads to an asymmetric residual stress distribution.The spray quenching treatment was conducted on self-designed spray equipment,and the residual stress along the thickness direction was measured by a layer removal method based on deflections.Under the asymmetric spray quenching condition,the subsurface stress of the high-flow rate surface was lower than that of the low-flow rate surface,and the difference between the two subsurface stresses increased with the increase in the difference in water flow rates.The subsurface stress underneath the surface with a water flow rate of 0.60 m^(3)/h was 15.38 MPa less than that of 0.15 m^(3)/h.The simulated residual stress by finite element(FE)method of the high heat transfer coefficient(HTC)surface was less than that of the low HTC surface,which is consistent with the experimental results.The FE model can be used to analyze the strain and stress evolution and predict the quenched stress magnitude and distribution.
基金supported by the“Strategic Priority Research Program”of the Chinese Academy of Sciences(No.XDA0201002)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2018301).
文摘The molten salt leakage accident is an important issue in the nuclear safety analysis of molten salt reactors.While the molten salt leaks from the pipeline or storage tank,it will contact the insulation layer outside;hence,the processes of penetration and spreading play an important role in the development of leakage accidents.In this study,the penetration and diffusion of leaking molten salt(LMS)in an aluminum silicate fiber(ASF)thermal insulation layer were studied experimentally.A molten salt tank with an adjustable outlet was designed to simulate the leakage of molten salt,and the subsequent behavior in the thermal insulation layer was evaluated by measuring the penetra-tion time and penetration mass of the LMS.The results show that when the molten salt discharges from the outlet and reaches the thermal insulation layer,the LMS will penetrate and seep out from the ASF,and a higher flow rate of LMS requires less penetration time and leaked mass of LMS.As the temperature of the LMS and thickness of the ASF increased,the penetration time became longer and the leaked mass became greater at a lower LMS flow rate;when the LMS flow rate increased,the penetration time and leaked mass decreased rapidly and tended to flatten.
文摘The thermal barrier coatings with NiCrAlY alloy bonding layer, NiCrAlY Y 2O 3 stabilized ZrO 2 transition layer and Y 2O 3 stabilized ZrO 2 ceramic layer are prepared on nickel alloy substrates using the plasma spray technique. The relationship among the composition, structure and property of the coatings are investiga ted by means of optical microscope, scanning electronic microscope and the experiments of thermal shock resistance cycling and high temperature oxidation resistance. The results show that the structure design of introdu cing a transition layer between Ni alloy substrate and ZrO 2 ceramic coating guarantees the high quality and properties of the coatings; ZrO 2 coatings doped with a little SiO 2 possesses better thermal shock resistance and more excellent hot corrosion resistance as compared with ZrO 2 coating materials without SiO 2 ;the improvement in performance of ZrO 2 coating doped with SiO 2 is due to forming more dense coating structure by self closing effects of the flaws and pores in the ZrO 2 coatings.
文摘The thermoelastic behaviors of such as temperature distribution, displacements, and stresses in thermal barrier coatings (TBC) are seriously influenced by top coat thickness and edge conditions. The top coat of TBC specimens prepared with TriplexPro?-200 system was controlled by changing the processing parameter and feedstock, showing the various thicknesses and microstructures. A couple of governing partial differential equations were derived based on the thermoelastic theory. Since the governing equations were too involved to solve analytically, a finite volume method was developed to obtain approximations. The thermoelastic behaviors of TBC specimens with the various thicknesses and microstructures were estimated through mathematical approaches with different edge conditions. The results demonstrated that the microstructure and thickness of the top coat, and the edge condition in theoretical analysis were crucial factors to be considered in controlling the thermoelastic characteristics of plasma-sprayed TBCs.
基金the National Key R&D Program of China(2019YFD1101200,2019YFD1101204)Natural Science Foundation of China(51772150)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Jiangsu Provincial Key Research and Development Program(BE2018008-1).
文摘The graphene oxide powder(GOP)obtained from the spray drying process often exhibits poor redispersibility which is considered due to the partial reduction of GO sheets.The reduction of drying temperature can effectively increase the redispersibility of GOP,but result in a decreased drying efficiency.Herein,we found that the redispersibility of GOP is strongly affected by its microstructure,which is determined by the feed concentration.With the increase of feed concentration,the GO nanosheet assembly varies from the disordered stacking to relatively oriented assembly,making the morphology of the GOP transform from balllike(the most crumpled one)to flakelike(the least crumpled one),and the 0.8 mgml 1 is the threshold concentration for the morphology,structure,and redispersibility change.Once the feed concentration reaches 0.8 mg ml 1,the appearance of the nematic phase in droplet ensures the relatively oriented assembly of GO sheets to form the layered structure with a low crumpling degree,which greatly improves the polar parts surface tension of the solid GOP,making the GOP easier to form hydrogen bonding with water during the redispersion process,thus stabilizing dispersion.This work provides useful information for understanding the relationships between the morphology,microstructure,and final redispersibility of GOPs.
基金financially supported by the National Natural Science Foundation of China(NSFC,21805298,21905288,51904288)the Zhejiang Provincial Natural Science Foundation(Z21B030017)+2 种基金the K.C.Wong Education Foundation(GJTD-201913)the Ningbo major special projects of the Plan‘‘Science and Technology Innovation 2025”(2018B10056,2019B10046)the Ningbo 3315 Program。
文摘The retarded kinetics of oxygen evolution on electrodes is a bottleneck for electrochemical energy conversion and storage systems.NiFe-based electrocatalysts provide a cost-effective choice to confront this challenge.However,there is a lack of facile techniques for depositing compact catalytic films of high coverage and possessing a state-of-the-art performance,which is especially desired in photoelectrochemical(PEC)systems.Herein,we demonstrate a spray pyrolysis(SP)route to address this issue,featuring the kinetic selective preparation towards the desired catalytic-active material.Differing from reported SP protocols which only produce inactive oxides,this approach directly generates a unique composite film consisting of NiFe layered oxyhydroxides and amorphous oxides,exhibiting an overpotential as small as 255 mV(10 mA cm^(−2))and a turnover frequency of∼0.4 s^(−1)per metal atom.By using such a facile protocol,the surface rate-limiting issue of BiVO_(4)photoanodes can be effectively resolved,resulting in a charge injection efficiency of over 90%.Considering this deposition directly start from simple nitrates but only takes several seconds to complete,we believe it can be developed as a widely applicable and welcomed functionalization technique for diverse electrochemical devices.
文摘A combination of methods was developed that can determine hydrodynamic forces on a planing hull in steady motion.Firstly,a potential-based boundary-element method was used to calculate the hydrodynamic pressure,induced resistance and lift.Then the frictional resistance component was determined by the viscous boundary layer theory.Finally,a particular empirical technique was applied.to determine the region of upwash geometry and determine spray resistance.Case studies involving four models of Series 62 planing craft were run.These showed that the suggested method is efficient and capable,with results that are in good agreement with experimental measurements over a wide range of volumetric Froude numbers.
基金supported in part by the Research and Study Project of Tokai University General Research Organization and by the Grant-in-Aid for Scientific Research Grant Number 20H02838the Universiti Kebangsaan Malaysia for supporting this study through FRGS/1/2017/TK07/UKM/02/9 Grantsupported by the Research Grants Council of Hong Kong,China(Project Number:152093/18E).
文摘The photovoltaic performance of perovskite solar cells(PSCs)can be improved by utilizing efficient front contact.However,it has always been a significant challenge for fabricating high-quality,scalable,controllable,and cost-effective front contact.This study proposes a realistic multi-layer front contact design to realize efficient single-junction PSCs and perovskite/perovskite tandem solar cells(TSCs).As a critical part of the front contact,we prepared a highly compact titanium oxide(TiO2)film by industrially viable Spray Pyrolysis Deposition(SPD),which acts as a potential electron transport layer(ETL)for the fabrication of PSCs.Optimization and reproducibility of the TiO2 ETL were discreetly investigated while fabricating a set of planar PSCs.As the front contact has a significant influence on the optoelectronic properties of PSCs,hence,we investigated the optics and electrical effects of PSCs by three-dimensional(3D)finite-difference time-domain(FDTD)and finite element method(FEM)rigorous simulations.The investigation allows us to compare experimental results with the outcome from simulations.Furthermore,an optimized single-junction PSC is designed to enhance the energy conversion efficiency(ECE)by>30% compared to the planar reference PSC.Finally,the study has been progressed to the realization of all-perovskite TSC that can reach the ECE,exceeding 30%.Detailed guidance for the completion of high-performance PSCs is provided.
文摘In order to clarify how groundwater leakage and river runoff occur in a catchment under tectonic movement, the water balance was estimated in the forested (88.3% in area) Oikamanai River catchment (area, 62.6 km2), Hokkaido, Japan. The catchment’s geology is early Miocene to Pliocene sedimentary bedrock of partly high permeability, accompanied by currently active faults. Daily evapotranspiration, E, in water balance was calculated by applying the one-layer model to meteorological data in the rainfall season of 2011 and 2012, with the topographic influence on heat balance of the catchment considered. The coupling with the short-term water balance method for river runoff events allows us to estimate groundwater leaking to the other catchments through the faults and bedrock. As a result, the leakage corresponded to 50% - 80% of effective rainfall (=P - E: P, rainfall) in 2011, whereas it was lower or negative in 2012. The estimate of leakage then included variability of ca. 80%. In 2012, shallow groundwater storage seems to retain high baseflow during non-rainfall.
文摘High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated.
基金Supported by the National Basic Research Program of China(973 Program)(No.2013CB430304)the National Natural Science Foundation of China(Nos.41030854,41106005,41176003,41206178,41376015,41376013,41306006)+1 种基金the National High-Tech R&D Program of China(No.2013AA09A505)the Public Science and Technology Research Funds Projects of Ocean(No.20130531-8)
文摘At the interface between the lower atmosphere and sea surface,sea spray might significantly influence air-sea heat fluxes and subsequently,modulate upper ocean temperature during a typhoon passage. The effects of sea spray were introduced into the parameterization of sea surface roughness in a 1-D turbulent model,to investigate the effects of sea spray on upper ocean temperature in the Kuroshio Extension area,for the cases of two real typhoons from 2006,Yagi and Soulik. Model output was compared with data from the Kuroshio Extension Observatory(KEO),and Reynolds and AMSRE satellite remote sensing sea surface temperatures. The results indicate drag coefficients that include the spray effect are closer to observations than those without,and that sea spray can enhance the heat fluxes(especially latent heat flux) considerably during a typhoon passage. Consequently,the model results with heat fluxes enhanced by sea spray simulate better the cooling process of the SST and upper-layer temperature profiles. Additionally,results from the simulation of the passage of typhoon Soulik(that passed KEO quickly),which included the sea spray effect,were better than for the simulated passage of typhoon Yagi(that crossed KEO slowly). These promising 1-D results could provide insight into the application of sea spray in general circulation models for typhoon studies.
文摘SiC particulate reinforced 6066 aluminium alloy metal matrix composites (MMCs) were prepared by multi layer spray forming. The preparation technology and process parameters were discussed. It is shown that SiC particulate can be continuously and evenly fed and co deposited in the spray forming process. The reciprocally scanning movement of spraying system can make the SiC particulates distribute homogeneously in the composite. The ratio of SiC particulates captured by the metal matrix is influenced by process parameters, especially the metal flow rate. 6066/SiC p composite preforms of d 300 mm×540 mm and tubes with a size of up to d 650/ d 300 mm×1 000 mm were made by the same process. After extrusion and T6 heat treatment, the multi layer spray deposited 6066/SiC p composites can achieve improved properties. [