In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are develo...In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are developed for multi-support seismic excitations. The coefficients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coefficients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coefficients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational efficiency of the analytical solutions of the modal combination coefficients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coefficients is less than 1/20 of that using numerical integral methods.展开更多
AIM: To elucidate whether human primary gastric cancer and gastric mucosa epithelial cells in vitro can grow normally in a methionine (Met) depleted environment, i.e. Met-dependence, and whether Met-depleting status c...AIM: To elucidate whether human primary gastric cancer and gastric mucosa epithelial cells in vitro can grow normally in a methionine (Met) depleted environment, i.e. Met-dependence, and whether Met-depleting status can enhance the killing effect of chemotherapy on gastric cancer cells. METHODS: Fresh human gastric cancer and mucosal tissues were managed to form monocellular suspensions, which were then cultured in the Met-free but homocysteine-containing (Met(-)Hcy(+)) medium, with different chemotherapeutic drugs. The proliferation of the cells was examined by cell counter, flow cytometry (FCM) and microcytotoxicity assay (MTT). RESULTS: The growth of human primary gastric cancer cells in Met(-)Hcy(+) was suppressed, manifested by the decrease of total cell counts [1.46 +/- 0.42 (x 10(9).L(-1)) in Met(-)Hcy(+) vs 1.64 +/-0.44(x 10(9).L(-1)) in Met(+)Hcy(-), P【0.01], the decline in the percentage of G(0)G(1) phase cells (0.69 +/- 0.24 in Met(-)Hcy(+) vs 0.80 +/- 0.18 in Met(+)Hcy(-), P【0.01) and the increase of S cells (0.24 +/- 0.20 in Met(-)Hcy(+) vs 0.17 +/- 0.16 in Met(+)Hcy(-), P【0.01); however, gastric mucosal cells grew normally. If Met(-)Hcy(+) medium was used in combination with chemotherapeutic drugs, the number of surviving gastric cancer cells dropped significantly. CONCLUSION: Human primary gastric cancer cells in vitro are Met-dependent; however, gastric mucosal cells have not shown the same characteristics. Met(-)Hcy(+) environment may strengthen the killing effect of chemotherapy on human primary gastric cancer cells.展开更多
Aiming at the characteristics of the poor steady ability, the short stable time and severe deformation behavior of weakly cemented soft surrounding rock around extraction roadway, a bolt–cable combined supporting tec...Aiming at the characteristics of the poor steady ability, the short stable time and severe deformation behavior of weakly cemented soft surrounding rock around extraction roadway, a bolt–cable combined supporting technology was proposed. Numerical simulation was performed by using FLAC3 D software to study the effects of different supporting systems. The simulation result proves that those supporting systems have good practical values. Based on real-time monitoring and analysis of the deformation of surrounding rock and the stress of supporting structure, real time information of deformation of surrounding rock and stress state of supporting structure of extraction roadway within weakly cemented strata was obtained. Monitoring results show that large deformation and failure of surrounding rock of extraction roadway within weakly cemented strata can be effectively controlled by the bolt–cable combined supporting technology, which ensures the long-term stability and safety of surrounding rock and supporting structure.展开更多
INTRODUCTIONThe main component of a traditional Chinese drug 'Pishuang'. arsenic trioxide (As2O3), has obviously selective anti-tumor effect on human hepatocellular carcinoma (HCC)in both in vitro and in vivo ...INTRODUCTIONThe main component of a traditional Chinese drug 'Pishuang'. arsenic trioxide (As2O3), has obviously selective anti-tumor effect on human hepatocellular carcinoma (HCC)in both in vitro and in vivo studies[1-5]. Due to limited effectiveness when any anti-carcinogen is used alone and obviously increased toxicity when the dose is raised, there is no exception for As2O3. Furthermore, combined chemotherapy contributes to improve therapeutic effectiveness, disperse toxicity and surmount drug-resistance,in which the combination of traditional Chinese and modern medicine has more advantages and characteristics. As a result,we made an experimental study on anti-tumor effect of As2O3in combination with cisplantin (PDD) or doxorubicin (ADM)on HCC. to investigate the possibility of AS2O3 in combination with PDD or ADM and nature of interaction between them,and to provide experimental basis for clinical application.展开更多
Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The cl...Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term dis-turbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages.展开更多
Using the spatial structure of the external staggered split-level panel layout,a combined support technology for adjacent roadways was developed and analyzed for a rock bolt and anchor cable mechanism.The influence of...Using the spatial structure of the external staggered split-level panel layout,a combined support technology for adjacent roadways was developed and analyzed for a rock bolt and anchor cable mechanism.The influence of the side rock bolt and anchor cable parameters on the mechanical properties of the anchorage body and the support stress distribution of the lateral coal body were revealed using the FLAC3D software.The optimal support parameters of the side rock bolts and anchor cables were subsequently determined,and the support effect of gob-side entry in a mining scenario was verified.The results show that the support of the side rock bolts and anchor cables improves the mechanical properties and stress state of the anchorage body,producing a good protective effect on the coal body of the air-intake entry roof and side wall.This is beneficial to the stability of the side wall and the realization of the suspension effect for roof rock bolts and anchor cables,which in turn makes the surrounding rock maintenance of the gob-side entry to a thick coal seam more favorable.展开更多
Owing to the effect of classified models was different in Protein-Protein Interaction(PPI) extraction, which was made by different single kernel functions, and only using single kernel function hardly trained the opti...Owing to the effect of classified models was different in Protein-Protein Interaction(PPI) extraction, which was made by different single kernel functions, and only using single kernel function hardly trained the optimal classified model to extract PPI, this paper presents a strategy to find the optimal kernel function from a kernel function set. The strategy is that in the kernel function set which consists of different single kernel functions, endlessly finding the last two kernel functions on the performance in PPI extraction, using their optimal kernel function to replace them, until there is only one kernel function and it’s the final optimal kernel function. Finally, extracting PPI using the classified model made by this kernel function. This paper conducted the PPI extraction experiment on AIMed corpus, the experimental result shows that the optimal convex combination kernel function this paper presents can effectively improve the extraction performance than single kernel function, and it gets the best precision which reaches 65.0 among the similar PPI extraction systems.展开更多
AIM:rAAV mediated endostatin gene therapy has been examined as a new method for treating cancer.However, a sustained and high protein delivery is required to achieve the desired therapeutic effects.We evaluated the im...AIM:rAAV mediated endostatin gene therapy has been examined as a new method for treating cancer.However, a sustained and high protein delivery is required to achieve the desired therapeutic effects.We evaluated the impact of topoisomerase inhibitors in rAAV delivered endostatin gene therapy in a liver tumor model. METHODS:rAAV containing endostatin expression cassettes were transduced into hepatoma cell lines.To test whether the topoisomerase inhibitor pretreatment increased the expression of endostatin,Western blotting and ELISA were performed.The biologic activity of endostatin was confirmed by endothelial cell proliferation and tube formation assays. The anti-tumor effects of the rAAV-endostatin vector combined with a topoisomerase inhibitor,etoposide,were evaluated in a mouse liver tumor model. RESULTS:Topoisomerase inhibitors,including camptothecin and etoposide,were found to increase the endostatin exPression level in vitro.The over-expressed endostatin, as a result of pretreatment with a topoisomerase inhibitor, was also biologically active.In animal experiments,the combined therapy of topoisomerase inhibitor,etoposide with the rAAV-endostatin vector had the best tumor- suppressive effect and tumor foci were barely observed in livers of the treated mice.Pretreatment with an etoposide increased the level of endostatin in the liver and serum of rAAV-endostatin treated mice.Finally,the mice treated With rAAV-endostatin in combination with etoposide showed the longest survival among the experimental models. CONCLUSION:rAAV delivered endostatin gene therapy in combination with a topoisomerase inhibitor pretreatment is an effective modality for anticancer gene therapy.展开更多
Equal Salt Deposit Density (ESDD) is a main factor to classify contamination severity and draw pollution distribution map. The precise ESDD forecasting plays an important role in the safety, economy and reliability of...Equal Salt Deposit Density (ESDD) is a main factor to classify contamination severity and draw pollution distribution map. The precise ESDD forecasting plays an important role in the safety, economy and reliability of power system. To cope with the problems existing in the ESDD predicting by multivariate linear regression (MLR), back propagation (BP) neural network and least squares support vector machines (LSSVM), a nonlinear combination forecasting model based on wavelet neural network (WNN) for ESDD is proposed. The model is a WNN with three layers, whose input layer has three neurons and output layer has one neuron, namely, regarding the ESDD forecasting results of MLR, BP and LSSVM as the inputs of the model and the observed value as the output. In the interest of better reflection of the influence of each single forecasting model on ESDD and increase of the accuracy of ESDD prediction, Morlet wavelet is used to con-struct WNN, error backpropagation algorithm is adopted to train the network and genetic algorithm is used to determine the initials of the parameters. Simulation results show that the accuracy of the proposed combina-tion ESDD forecasting model is higher than that of any single model and that of traditional linear combina-tion forecasting (LCF) model. The model provides a new feasible way to increase the accuracy of pollution distribution map of power network.展开更多
In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses...In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses and strong disturbances and construction conditions such as the application of high prestress.It is essential to study the support components performance under dynamic-static coupling conditions.Based on this,a multi-functional anchorage support dynamic-static coupling performance test system(MAC system)is developed,which can achieve 7 types of testing functions,including single component performance,anchored net performance,anchored rock performance and so on.The bolt and cable mechanical tests are conducted by MAC system under different prestress levels.The results showed that compared to the non-prestress condition,the impact resistance performance of prestressed bolts(cables)is significantly reduced.In the prestress range of 50–160 k N,the maximum reduction rate of impact energy resisted by different types of bolts is 53.9%–61.5%compared to non-prestress condition.In the prestress range of 150–300 k N,the impact energy resisted by high-strength cable is reduced by76.8%–84.6%compared to non-prestress condition.The MAC system achieves dynamic-static coupling performance test,which provide an effective means for the design of anchorage support system.展开更多
The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining direct...The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining directional and non-directional blasting techniques,known as combined blasting,was proposed.This study focuses on the experimental investigation of the proposed method in the 122108 working face in Caojiatan Coal Mine as the engineering background.The initial phase of the study involves physical model experiments to reveal the underlying mechanisms of combined blasting for protecting gob-side roadway with thick and hard roof.The results demonstrate that this approach effectively accelerates the collapse of thick and hard roofs,enhances the fragmentation and expansion coefficient of gangue,facilitates the filling of the goaf with gangue,and provides support to the overlying strata,thus reducing the subsidence of the overlying strata above the goaf.Additionally,the method involves cutting the main roof into shorter beams to decrease the stress and disrupt stress transmission pathways.Subsequent numerical simulations were conducted to corroborate the findings of the physical model experiments,thus validating the accuracy of the experimental results.Furthermore,field engineering experiments were performed,affirming the efficacy of the combined blasting method in mitigating the deformation of surrounding rock and achieving the desired protection of the gob-side roadway.展开更多
Pile foundation bearing-retaining wall combination structure is a new type of support structure developed in recent years.This article focuses on the characteristics,advantages,and application scope of the support str...Pile foundation bearing-retaining wall combination structure is a new type of support structure developed in recent years.This article focuses on the characteristics,advantages,and application scope of the support structure,while combining a variety of algorithms,according to different geological conditions and slope stability,as well as summarizes the pile foundation bearing-retaining wall combination structure force analysis and design methods,taking a high-fill road project in Chongqing as an example.The application of this support structure under special conditions,such as thicker soil layer,steeper sliding surface,weak foundation,and limited slope release conditions,is presented,which illustrates the technical advantages of this support structure and proving that it has several other advantages,including clear force mechanism as well as economic and reasonable structure,thus providing reference for similar projects.展开更多
Based on geological and mining characteristics,coal mine roadways under complex conditions were divided into five types,for each type the deformation and damage characteristics of rocks surrounding roadways were analy...Based on geological and mining characteristics,coal mine roadways under complex conditions were divided into five types,for each type the deformation and damage characteristics of rocks surrounding roadways were analyzed.The recent developments of roadway support technologies were introduced abroad,based on the experiences of supports for deep and complex roadways from Germany,the United States and Australia.The history and achievements of roadway support technologies in China were detailed,including rock bolting,steel supports,grouting reinforcement and combined supports.Four typical support and reinforcement case studies were analyzed,including a high stressed roadway 1,000 m below the surface,a roadway surrounded by severely weak and broken rocks,a chamber surrounded by weak and broken rocks,and a roadway with very soft and swelling rocks.Based on studies and practices in many years,rock bolting has become the mainstream roadway support form in China coal mines,and steel supports,grouting reinforcement and combined supports have also been applied at proper occasions,which have provided reliable technical measures for the safe and high effective construction and mining of underground coal mines.展开更多
Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characterist...Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits.展开更多
Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to moni...Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to monitor the loose range and level of surrounding rocks. A mechanical model of weakly cemented roadway was established, including granular material based on the measured results. The model was then used to determine the plastic zone radium. The predicted results agree well with measured results which provide valuable theoretical references for the analysis of surrounding rock stability and support reinforcing design of weakly cemented roadways. Finally, a combined supporting scheme of whole section bolting and grouting was proposed based on the original supporting scheme. It is proved that this support plan can effectively control the deformation and plastic zone expansion of the roadway surrounding rock and thus ensure the long-term stable and safe mining.展开更多
This study focused on the mechanical behavior of a deep-buried tunnel constructed in horizontally layered limestone,and investigated the effect of a new combined rockboltecable support system on the tunnel response.Th...This study focused on the mechanical behavior of a deep-buried tunnel constructed in horizontally layered limestone,and investigated the effect of a new combined rockboltecable support system on the tunnel response.The Yujingshan Tunnel,excavated through a giant karst cave,was used as a case study.Firstly,a multi-objective optimization model for the rockboltecable support was proposed by using fuzzy mathematics and multi-objective comprehensive decision-making principles.Subsequently,the parameters of the surrounding rock were calibrated by comparing the simulation results obtained by the discrete element method(DEM)with the field monitoring data to obtain an optimized support scheme based on the optimization model.Finally,the optimization scheme was applied to the karst cave section,which was divided into the B-and C-shaped sections.The distribution range of the rockboltecable support in the C-shaped section was larger than that in the B-shaped section.The field monitoring results,including tunnel crown settlement,horizontal convergence,and axial force of the rockboltecable system,were analyzed to assess the effectiveness of the optimization scheme.The maximum crown settlement and horizontal convergence were measured to be 25.9 mm and 35 mm,accounting for 0.1%and 0.2%of the tunnel height and span,respectively.Although the C-shaped section had poorer rock properties than the B-shaped section,the crown settlement and horizontal convergence in the C-shaped section ranged from 46%to 97%of those observed in the B-shaped section.The cable axial force in the Bshaped section was approximately 60%of that in the C-shaped section.The axial force in the crown rockbolt was much smaller than that in the sidewall rockbolt.Field monitoring results demonstrated that the optimized scheme effectively controlled the deformation of the layered surrounding rock,ensuring that it remained within a safe range.These results provide valuable references for the design of support systems in deep-buried tunnels situated in layered rock masses.展开更多
The deformation and failure mechanical mechanism in soft rock roadway is related to the stability of supported tunnels, which is important to coal mine production and construction. By physical mechanics experiments an...The deformation and failure mechanical mechanism in soft rock roadway is related to the stability of supported tunnels, which is important to coal mine production and construction. By physical mechanics experiments and X-ray diffraction (XRD) tests, the engineering mechanical properties of soft rock, as well as main mineral composition of the surrounding soft rock of Qigou Coal Mine, were obtained. Based on analysis results, a method using bolt-beam-net combination to support was put forward. Mechanical analysis of the support form was done by using the calculation software FLAC3D. Results show that clay minerals of this mine are kaolinite and illite mixed layer, of which the water absorption is relatively obvious and presented mudding characteristic after absorbing water, with the plasticity index of 0.35, with small expansibility, which is weakly consolidated colloid with strong connected force in unit cell. The rock blocks have the characteristics of moisture absorption softening, and the deformation mechanical mechanism of which is with the coexistence of molecular expansive mechanism, colloid expansive mechanism, and weak layer trend type. The calculation results show that the bolt-beam-net support structure makes the bolt, beam, and roof deform compatibly. The beams make the force in the bolt relatively homogeneous, which restricts the displacement of the tunnel roof as well. Finally, using in situ monitoring, the numerical results were verified.展开更多
Along with the acceleration of population aging process, the government as a social security gatekeeper responsibility has become increasingly prominent, improve public finance policy, properly solve the pension probl...Along with the acceleration of population aging process, the government as a social security gatekeeper responsibility has become increasingly prominent, improve public finance policy, properly solve the pension problem has become the important work of governments at all levels. Under the guidance of national policy, the State Council "on promoting health and pension services combined guidance" put forward to 2020, the medical and health care services and resources to achieve the ordered shared, covering urban and rural areas, appropriate scale.functional^reasonable.comprehensive and continuous medical support with service network is basically formed. In this paper, the background of the aging population, the interpretation of the meaning of the combination of medical and support, analysis of the combination of medical support mode. It is pointed out that in public finance from the perspective of medical support with the development mode will face the difficulty of system design is not sufficient, the division of responsibilities is unknown, limitations of existing policies, human, financial and material resources lack of. At last on the basis of the proposed development of medical support combined with the pension service model emphasizes the role of the govenunent to speed up the system construction and innovation of financial subsidies. improve the policy system and other measures.展开更多
基金National Natural Science Foundation of China Under Grant No. 50478112
文摘In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are developed for multi-support seismic excitations. The coefficients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coefficients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coefficients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational efficiency of the analytical solutions of the modal combination coefficients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coefficients is less than 1/20 of that using numerical integral methods.
基金the Science Foundation of Ministry of Health of China,No.96-2-296
文摘AIM: To elucidate whether human primary gastric cancer and gastric mucosa epithelial cells in vitro can grow normally in a methionine (Met) depleted environment, i.e. Met-dependence, and whether Met-depleting status can enhance the killing effect of chemotherapy on gastric cancer cells. METHODS: Fresh human gastric cancer and mucosal tissues were managed to form monocellular suspensions, which were then cultured in the Met-free but homocysteine-containing (Met(-)Hcy(+)) medium, with different chemotherapeutic drugs. The proliferation of the cells was examined by cell counter, flow cytometry (FCM) and microcytotoxicity assay (MTT). RESULTS: The growth of human primary gastric cancer cells in Met(-)Hcy(+) was suppressed, manifested by the decrease of total cell counts [1.46 +/- 0.42 (x 10(9).L(-1)) in Met(-)Hcy(+) vs 1.64 +/-0.44(x 10(9).L(-1)) in Met(+)Hcy(-), P【0.01], the decline in the percentage of G(0)G(1) phase cells (0.69 +/- 0.24 in Met(-)Hcy(+) vs 0.80 +/- 0.18 in Met(+)Hcy(-), P【0.01) and the increase of S cells (0.24 +/- 0.20 in Met(-)Hcy(+) vs 0.17 +/- 0.16 in Met(+)Hcy(-), P【0.01); however, gastric mucosal cells grew normally. If Met(-)Hcy(+) medium was used in combination with chemotherapeutic drugs, the number of surviving gastric cancer cells dropped significantly. CONCLUSION: Human primary gastric cancer cells in vitro are Met-dependent; however, gastric mucosal cells have not shown the same characteristics. Met(-)Hcy(+) environment may strengthen the killing effect of chemotherapy on human primary gastric cancer cells.
基金financially supported by the National Natural Science Foundation of China (Nos. 51174196, 51204168, 51109209 and 51309222)the Youth Fund Project of Jiangsu Province Natural Science Foundation (No. BK20130193)
文摘Aiming at the characteristics of the poor steady ability, the short stable time and severe deformation behavior of weakly cemented soft surrounding rock around extraction roadway, a bolt–cable combined supporting technology was proposed. Numerical simulation was performed by using FLAC3 D software to study the effects of different supporting systems. The simulation result proves that those supporting systems have good practical values. Based on real-time monitoring and analysis of the deformation of surrounding rock and the stress of supporting structure, real time information of deformation of surrounding rock and stress state of supporting structure of extraction roadway within weakly cemented strata was obtained. Monitoring results show that large deformation and failure of surrounding rock of extraction roadway within weakly cemented strata can be effectively controlled by the bolt–cable combined supporting technology, which ensures the long-term stability and safety of surrounding rock and supporting structure.
基金Supported by the Youth Science Grant of Jiangshu Province,No.BQ98048.
文摘INTRODUCTIONThe main component of a traditional Chinese drug 'Pishuang'. arsenic trioxide (As2O3), has obviously selective anti-tumor effect on human hepatocellular carcinoma (HCC)in both in vitro and in vivo studies[1-5]. Due to limited effectiveness when any anti-carcinogen is used alone and obviously increased toxicity when the dose is raised, there is no exception for As2O3. Furthermore, combined chemotherapy contributes to improve therapeutic effectiveness, disperse toxicity and surmount drug-resistance,in which the combination of traditional Chinese and modern medicine has more advantages and characteristics. As a result,we made an experimental study on anti-tumor effect of As2O3in combination with cisplantin (PDD) or doxorubicin (ADM)on HCC. to investigate the possibility of AS2O3 in combination with PDD or ADM and nature of interaction between them,and to provide experimental basis for clinical application.
基金Project (No. 50437010) supported by the Key Program of the Na-tional Natural Science Foundation of China
文摘Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term dis-turbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages.
基金National Natural Science Foundation of Surface Project of China(Grant Nos.5177428952074291)+2 种基金The National Natural Science Foundation of the Youth Science Foundation of China(Grant No.51404270)The Fundamental Research Funds for the Central Universities(Grant No.2011QZ06)The Open Fund of State Key Laboratory of Coal Resources in Western China(Grant No.SKLCRKF1903).
文摘Using the spatial structure of the external staggered split-level panel layout,a combined support technology for adjacent roadways was developed and analyzed for a rock bolt and anchor cable mechanism.The influence of the side rock bolt and anchor cable parameters on the mechanical properties of the anchorage body and the support stress distribution of the lateral coal body were revealed using the FLAC3D software.The optimal support parameters of the side rock bolts and anchor cables were subsequently determined,and the support effect of gob-side entry in a mining scenario was verified.The results show that the support of the side rock bolts and anchor cables improves the mechanical properties and stress state of the anchorage body,producing a good protective effect on the coal body of the air-intake entry roof and side wall.This is beneficial to the stability of the side wall and the realization of the suspension effect for roof rock bolts and anchor cables,which in turn makes the surrounding rock maintenance of the gob-side entry to a thick coal seam more favorable.
文摘Owing to the effect of classified models was different in Protein-Protein Interaction(PPI) extraction, which was made by different single kernel functions, and only using single kernel function hardly trained the optimal classified model to extract PPI, this paper presents a strategy to find the optimal kernel function from a kernel function set. The strategy is that in the kernel function set which consists of different single kernel functions, endlessly finding the last two kernel functions on the performance in PPI extraction, using their optimal kernel function to replace them, until there is only one kernel function and it’s the final optimal kernel function. Finally, extracting PPI using the classified model made by this kernel function. This paper conducted the PPI extraction experiment on AIMed corpus, the experimental result shows that the optimal convex combination kernel function this paper presents can effectively improve the extraction performance than single kernel function, and it gets the best precision which reaches 65.0 among the similar PPI extraction systems.
基金Supported by a faculty research grant of Yonsei University College of Medicine for 2002,No.2002-06
文摘AIM:rAAV mediated endostatin gene therapy has been examined as a new method for treating cancer.However, a sustained and high protein delivery is required to achieve the desired therapeutic effects.We evaluated the impact of topoisomerase inhibitors in rAAV delivered endostatin gene therapy in a liver tumor model. METHODS:rAAV containing endostatin expression cassettes were transduced into hepatoma cell lines.To test whether the topoisomerase inhibitor pretreatment increased the expression of endostatin,Western blotting and ELISA were performed.The biologic activity of endostatin was confirmed by endothelial cell proliferation and tube formation assays. The anti-tumor effects of the rAAV-endostatin vector combined with a topoisomerase inhibitor,etoposide,were evaluated in a mouse liver tumor model. RESULTS:Topoisomerase inhibitors,including camptothecin and etoposide,were found to increase the endostatin exPression level in vitro.The over-expressed endostatin, as a result of pretreatment with a topoisomerase inhibitor, was also biologically active.In animal experiments,the combined therapy of topoisomerase inhibitor,etoposide with the rAAV-endostatin vector had the best tumor- suppressive effect and tumor foci were barely observed in livers of the treated mice.Pretreatment with an etoposide increased the level of endostatin in the liver and serum of rAAV-endostatin treated mice.Finally,the mice treated With rAAV-endostatin in combination with etoposide showed the longest survival among the experimental models. CONCLUSION:rAAV delivered endostatin gene therapy in combination with a topoisomerase inhibitor pretreatment is an effective modality for anticancer gene therapy.
文摘Equal Salt Deposit Density (ESDD) is a main factor to classify contamination severity and draw pollution distribution map. The precise ESDD forecasting plays an important role in the safety, economy and reliability of power system. To cope with the problems existing in the ESDD predicting by multivariate linear regression (MLR), back propagation (BP) neural network and least squares support vector machines (LSSVM), a nonlinear combination forecasting model based on wavelet neural network (WNN) for ESDD is proposed. The model is a WNN with three layers, whose input layer has three neurons and output layer has one neuron, namely, regarding the ESDD forecasting results of MLR, BP and LSSVM as the inputs of the model and the observed value as the output. In the interest of better reflection of the influence of each single forecasting model on ESDD and increase of the accuracy of ESDD prediction, Morlet wavelet is used to con-struct WNN, error backpropagation algorithm is adopted to train the network and genetic algorithm is used to determine the initials of the parameters. Simulation results show that the accuracy of the proposed combina-tion ESDD forecasting model is higher than that of any single model and that of traditional linear combina-tion forecasting (LCF) model. The model provides a new feasible way to increase the accuracy of pollution distribution map of power network.
基金supported by the National Natural Science Foundation of China(Nos.51927807,52074164,42277174,42077267 and 42177130)the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)China University of Mining and Technology(Beijing)Top Innovative Talent Cultivation Fund for Doctoral Students(No.BBJ2023048)。
文摘In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses and strong disturbances and construction conditions such as the application of high prestress.It is essential to study the support components performance under dynamic-static coupling conditions.Based on this,a multi-functional anchorage support dynamic-static coupling performance test system(MAC system)is developed,which can achieve 7 types of testing functions,including single component performance,anchored net performance,anchored rock performance and so on.The bolt and cable mechanical tests are conducted by MAC system under different prestress levels.The results showed that compared to the non-prestress condition,the impact resistance performance of prestressed bolts(cables)is significantly reduced.In the prestress range of 50–160 k N,the maximum reduction rate of impact energy resisted by different types of bolts is 53.9%–61.5%compared to non-prestress condition.In the prestress range of 150–300 k N,the impact energy resisted by high-strength cable is reduced by76.8%–84.6%compared to non-prestress condition.The MAC system achieves dynamic-static coupling performance test,which provide an effective means for the design of anchorage support system.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52074298 and 52204164)Fundamental Research Funds for the Central Universities(Grant No.2022XJSB03).
文摘The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining directional and non-directional blasting techniques,known as combined blasting,was proposed.This study focuses on the experimental investigation of the proposed method in the 122108 working face in Caojiatan Coal Mine as the engineering background.The initial phase of the study involves physical model experiments to reveal the underlying mechanisms of combined blasting for protecting gob-side roadway with thick and hard roof.The results demonstrate that this approach effectively accelerates the collapse of thick and hard roofs,enhances the fragmentation and expansion coefficient of gangue,facilitates the filling of the goaf with gangue,and provides support to the overlying strata,thus reducing the subsidence of the overlying strata above the goaf.Additionally,the method involves cutting the main roof into shorter beams to decrease the stress and disrupt stress transmission pathways.Subsequent numerical simulations were conducted to corroborate the findings of the physical model experiments,thus validating the accuracy of the experimental results.Furthermore,field engineering experiments were performed,affirming the efficacy of the combined blasting method in mitigating the deformation of surrounding rock and achieving the desired protection of the gob-side roadway.
基金Youth Project of Science and Technology Research of Chongqing Municipal Education Commission“Research on the Promotion of Pile Foundation Bearing-Retaining Wall Combined Structure Technology”(Project Number:KJQN201905601)Youth Project of Science and Technology Research of Chongqing Education Commission“Research on Construction Monitoring and Risk Warning of Deep Foundation Pit Project Based on BIM+Internet of Things”(Project Number:KJQN201904306)。
文摘Pile foundation bearing-retaining wall combination structure is a new type of support structure developed in recent years.This article focuses on the characteristics,advantages,and application scope of the support structure,while combining a variety of algorithms,according to different geological conditions and slope stability,as well as summarizes the pile foundation bearing-retaining wall combination structure force analysis and design methods,taking a high-fill road project in Chongqing as an example.The application of this support structure under special conditions,such as thicker soil layer,steeper sliding surface,weak foundation,and limited slope release conditions,is presented,which illustrates the technical advantages of this support structure and proving that it has several other advantages,including clear force mechanism as well as economic and reasonable structure,thus providing reference for similar projects.
文摘Based on geological and mining characteristics,coal mine roadways under complex conditions were divided into five types,for each type the deformation and damage characteristics of rocks surrounding roadways were analyzed.The recent developments of roadway support technologies were introduced abroad,based on the experiences of supports for deep and complex roadways from Germany,the United States and Australia.The history and achievements of roadway support technologies in China were detailed,including rock bolting,steel supports,grouting reinforcement and combined supports.Four typical support and reinforcement case studies were analyzed,including a high stressed roadway 1,000 m below the surface,a roadway surrounded by severely weak and broken rocks,a chamber surrounded by weak and broken rocks,and a roadway with very soft and swelling rocks.Based on studies and practices in many years,rock bolting has become the mainstream roadway support form in China coal mines,and steel supports,grouting reinforcement and combined supports have also been applied at proper occasions,which have provided reliable technical measures for the safe and high effective construction and mining of underground coal mines.
基金financial assistance provided by the National Natural Science Foundation of China (Nos. 51322401, 51404262, 51579239, 51574223)Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals (Shandong University of Science and Technology) of China (No. CDPM2014KF03)+1 种基金China Postdoctoral Science Foundation (Nos. 2015M580493, 2014M551700, 2013M531424)the Natural Science Foundation of Jiangsu Province of China (No. BK20140213)
文摘Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits.
基金provided by the National 973 Programs(No.2014CB046905)the National Natural Science Foundation of China(Nos.51274191 and 51404245)+1 种基金the Doctoral Fund of Ministry of Education(No.20130095110018)China Postdoctoral Science Foundation(No.2014M551699)
文摘Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to monitor the loose range and level of surrounding rocks. A mechanical model of weakly cemented roadway was established, including granular material based on the measured results. The model was then used to determine the plastic zone radium. The predicted results agree well with measured results which provide valuable theoretical references for the analysis of surrounding rock stability and support reinforcing design of weakly cemented roadways. Finally, a combined supporting scheme of whole section bolting and grouting was proposed based on the original supporting scheme. It is proved that this support plan can effectively control the deformation and plastic zone expansion of the roadway surrounding rock and thus ensure the long-term stable and safe mining.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No.2023JBZY024)Beijing Natural Science Foundation (Grant No.9244040)opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology (Grant No.SKLGP2023K015).
文摘This study focused on the mechanical behavior of a deep-buried tunnel constructed in horizontally layered limestone,and investigated the effect of a new combined rockboltecable support system on the tunnel response.The Yujingshan Tunnel,excavated through a giant karst cave,was used as a case study.Firstly,a multi-objective optimization model for the rockboltecable support was proposed by using fuzzy mathematics and multi-objective comprehensive decision-making principles.Subsequently,the parameters of the surrounding rock were calibrated by comparing the simulation results obtained by the discrete element method(DEM)with the field monitoring data to obtain an optimized support scheme based on the optimization model.Finally,the optimization scheme was applied to the karst cave section,which was divided into the B-and C-shaped sections.The distribution range of the rockboltecable support in the C-shaped section was larger than that in the B-shaped section.The field monitoring results,including tunnel crown settlement,horizontal convergence,and axial force of the rockboltecable system,were analyzed to assess the effectiveness of the optimization scheme.The maximum crown settlement and horizontal convergence were measured to be 25.9 mm and 35 mm,accounting for 0.1%and 0.2%of the tunnel height and span,respectively.Although the C-shaped section had poorer rock properties than the B-shaped section,the crown settlement and horizontal convergence in the C-shaped section ranged from 46%to 97%of those observed in the B-shaped section.The cable axial force in the Bshaped section was approximately 60%of that in the C-shaped section.The axial force in the crown rockbolt was much smaller than that in the sidewall rockbolt.Field monitoring results demonstrated that the optimized scheme effectively controlled the deformation of the layered surrounding rock,ensuring that it remained within a safe range.These results provide valuable references for the design of support systems in deep-buried tunnels situated in layered rock masses.
基金Supported by the Natural Science Foundation of China (50974126) the Specific Scientific Research Fund for Doctorial Subject (20100023120003) the Major Science and Technology Projects funded by the Ministry of Education (109034)
文摘The deformation and failure mechanical mechanism in soft rock roadway is related to the stability of supported tunnels, which is important to coal mine production and construction. By physical mechanics experiments and X-ray diffraction (XRD) tests, the engineering mechanical properties of soft rock, as well as main mineral composition of the surrounding soft rock of Qigou Coal Mine, were obtained. Based on analysis results, a method using bolt-beam-net combination to support was put forward. Mechanical analysis of the support form was done by using the calculation software FLAC3D. Results show that clay minerals of this mine are kaolinite and illite mixed layer, of which the water absorption is relatively obvious and presented mudding characteristic after absorbing water, with the plasticity index of 0.35, with small expansibility, which is weakly consolidated colloid with strong connected force in unit cell. The rock blocks have the characteristics of moisture absorption softening, and the deformation mechanical mechanism of which is with the coexistence of molecular expansive mechanism, colloid expansive mechanism, and weak layer trend type. The calculation results show that the bolt-beam-net support structure makes the bolt, beam, and roof deform compatibly. The beams make the force in the bolt relatively homogeneous, which restricts the displacement of the tunnel roof as well. Finally, using in situ monitoring, the numerical results were verified.
文摘Along with the acceleration of population aging process, the government as a social security gatekeeper responsibility has become increasingly prominent, improve public finance policy, properly solve the pension problem has become the important work of governments at all levels. Under the guidance of national policy, the State Council "on promoting health and pension services combined guidance" put forward to 2020, the medical and health care services and resources to achieve the ordered shared, covering urban and rural areas, appropriate scale.functional^reasonable.comprehensive and continuous medical support with service network is basically formed. In this paper, the background of the aging population, the interpretation of the meaning of the combination of medical and support, analysis of the combination of medical support mode. It is pointed out that in public finance from the perspective of medical support with the development mode will face the difficulty of system design is not sufficient, the division of responsibilities is unknown, limitations of existing policies, human, financial and material resources lack of. At last on the basis of the proposed development of medical support combined with the pension service model emphasizes the role of the govenunent to speed up the system construction and innovation of financial subsidies. improve the policy system and other measures.