Mg-Li-Gd alloys were prepared by electrochemical codeposition from LiCl-KCl-MgCl 2 -Gd 2 O 3 melts on molybdenum electrode with constant current density at 823 and 973 K. The microstructure of the Mg-Li-Gd alloys was ...Mg-Li-Gd alloys were prepared by electrochemical codeposition from LiCl-KCl-MgCl 2 -Gd 2 O 3 melts on molybdenum electrode with constant current density at 823 and 973 K. The microstructure of the Mg-Li-Gd alloys was analyzed by X-ray diffraction (XRD), optical microscopy (OM) and scanning electron microscopy (SEM). The results show that magnesium and gadolinium deposit mainly in the first 30 min, and the alloy obtained contains 96.53% Mg, 0.27% Li and 3.20% Gd (mass fraction). Then, the reduction of lithium ions occurs quickly. The composition of alloy can be adjusted by controlling electrolysis time or Gd 2 O 3 concentration in LiCl-KCl melts. With the addition of Gd into Mg-Li alloys, the corrosion resistance of the alloys is enhanced. XRD results suggest that Mg 3 Gd and Mg 2 Gd can be formed in Mg-Li-Gd alloys. The distribution of Gd element in Mg-Li-Gd alloys indicates that Gd element mainly distributes at the grain boundaries of Mg-Li-Gd alloys.展开更多
The cyclic voltammetry, chronopotentiometry and chronoamperometry were used to study the behaviors of Fe 2+ on Pt, Cu, Ag and Ti electrodes in urea NaBr melt at 373 K. Electroreduction of Fe 2+ to metallic ...The cyclic voltammetry, chronopotentiometry and chronoamperometry were used to study the behaviors of Fe 2+ on Pt, Cu, Ag and Ti electrodes in urea NaBr melt at 373 K. Electroreduction of Fe 2+ to metallic Fe is irreversible in one step. The exchange current density determined on Ti electrode is 2 68×10 -5 A·cm -2 . Sm 3+ does not reduce to Sm alone, but can be inductively codeposited with Fe 2+ . Sm Fe alloy film contained over 90% Sm (mass fraction) can be obtained by potentiostatic electrolysis and galvanostatic electrolysis on Cu substrate. The Sm content in the alloy is related to the cathode potential, current density and the Sm 3+ /Fe 2+ molar ratio. The surface state of the Sm Fe deposit was studied by scanning electron microscopy.展开更多
Effects of five typical heat treatment processes on the damping properties and the damping peak of 6061Al/SiC p MMC fabricated by spray codeposition were studied. The results show that the internal friction spectra of...Effects of five typical heat treatment processes on the damping properties and the damping peak of 6061Al/SiC p MMC fabricated by spray codeposition were studied. The results show that the internal friction spectra of various heat treated samples exhibit the damping peak versus temperature between 130 ℃ and 200 ℃. Furthermore, the peak temperature as well as the peak height increases with increasing frequencies. By Arrhenius equation the active energy of the damping peak can be gotten, which is above 1 eV. On the other hand, different quenching treatments affect the damping peak remarkably, when the rate of cooling is above that of water quenching, the damping peak will shift to higher temperature as cooling speed is enhanced.展开更多
The mechanism of the electrolytic codeposition of Y Al alloy in molten LiF AlF 3 Al 2O 3 YF 3, LiF YF 3 Y 2O 3 AlF 3 and LiF YF 3 Y 2O 3 Al 2O 3 systems was investigated by means of cyclic volta...The mechanism of the electrolytic codeposition of Y Al alloy in molten LiF AlF 3 Al 2O 3 YF 3, LiF YF 3 Y 2O 3 AlF 3 and LiF YF 3 Y 2O 3 Al 2O 3 systems was investigated by means of cyclic voltammetry. The electrodeposited products were analysed by X ray diffraction. The results show that the electrolytic codeposition of Y Al alloy in the LiF YF 3 Y 2O 3 Al 2O 3 system without AlF 3 can be achieved at the same potential for Y(Ⅲ) and Al(Ⅲ) which have great difference in deposition potential. It is beneficial to codeposition of Y(Ⅲ) and Al(Ⅲ) when temperature rises. The potential of beginning codeposition is about -0.85 V ( vs Pt reference electrode), but only at the potential of -0.95 V or more negative can Y based Al alloy containing a great amount of yttrium be obtained.展开更多
The electrolytic codeposition of lanthanum-cobalt in the melt consisting of urea-NaCl-NaAc-CoCl2-LaCl3 was studied by means of cyclic voltammetry, electron probe analyser, X-ray diffraction. Cathodic potential, curren...The electrolytic codeposition of lanthanum-cobalt in the melt consisting of urea-NaCl-NaAc-CoCl2-LaCl3 was studied by means of cyclic voltammetry, electron probe analyser, X-ray diffraction. Cathodic potential, current density, La3+/Co2+ molar ratio in the melt and the electrode substrates all exercise influence on the content of lanthanum deposied. The deposites consist of cobalt and lanthanum, but they don't form any intermetallic compound.展开更多
Electrochemical codeposition of Mg-Li alloys on molybdenum electrodes was investigated in LiCl-KCl(50 wt.%:50 wt.%) melts containing different concentrations of MgCl2 at 973 K.Cyclic voltammograms show that the und...Electrochemical codeposition of Mg-Li alloys on molybdenum electrodes was investigated in LiCl-KCl(50 wt.%:50 wt.%) melts containing different concentrations of MgCl2 at 973 K.Cyclic voltammograms show that the underpotential deposition of lithium on pre-deposited magnesium leads to the formation of liquid Mg-Li alloys.The deposition potentials of Mg(II) and Li(I) ions gradually near each other with MgCl2 concentration decreasing.Mg-Li alloys with typical α + β phases could be obtained by potentiostatic electrolysis from LiCl-KCl melts containing 5 wt.% MgCl2 at -2.25 V vs.Ag/AgCl(cathodic current density 1.70 A·cm-2) for 2.5 h.α phase, α + β phases, and β phase Mg-Li alloys with different lithium contents were obtained by potentiostatic electrolysis from LiCl-KCl melts with the different concentrations of MgCl2.The samples were characterized by X-ray diffraction and scanning electron microscopy.展开更多
In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate wh...In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate where they impact and collect as rapidly solidified splats. Relatively high rates of solidification are achieved as a result of the thinness of the splats and the rapid heat extraction during flight and upon impacting with the substrate. The processing method uses codeposition of the metallic semi-solidified droplets (metallic matrix) with the injected reinforcement ceramic particles. In the present paper, the microstructures, mechanical properties, interfacial properties, thermal stability and aging behaviour of spray atomized and codeposited Al-Li-X MMC's (injected X=SiC, Al2O3) are reported and correlated to the processing conditions.展开更多
The influence of the injection of reinforcing particles (for the production of metal matrix composites and of the droplets-to-substrate heat transfer on the resulting microstructural uniformity of spray atomized and c...The influence of the injection of reinforcing particles (for the production of metal matrix composites and of the droplets-to-substrate heat transfer on the resulting microstructural uniformity of spray atomized and codeposited composite material is analyzed. The reinforcement particles injection velocity has to be limited between an upper and a lower critical values. in order to ensure entrapment into the matrix droplets in flight. The thermal history of the injected droplets during the deposition stage is calculated with the assumption that the in-flight solidifying droplets reach the substrate while containing still at least 20% liquid volume fraction, in order to avoid porosity of the deposited material. The substrate to pouring-tube orifice distance where that condition is achieved depends strongly on the atomization pressure and the convective heat transfer coefficient of the substrate. It is demonstrated that 'tailoring' the microstructures and the reinforcement volume percent in the deposited material is feasible. The critical process parameters : the atomization pressure, the melt flow rate. the substrate to pouring-tube orifice distance, the reinforcement particles injection location and rate can all be adequately chosen in order to obtain any desired microstructure, grain size, reinforcement volume percent, with the additional benefit, if wanted, of rapid solidification processing展开更多
Fluid mechanics, heat transfer and liquid-to-solid phase transformation are assessed in optimizing the spray atomization and codeposition process parameters for size refinement and microstructural uniformity of the de...Fluid mechanics, heat transfer and liquid-to-solid phase transformation are assessed in optimizing the spray atomization and codeposition process parameters for size refinement and microstructural uniformity of the deposited material. Atomization gas velocities, atomized droplets velocities, convective heat transfer coefficients, thermal histories of the solidifying droplets, freezing rates, fraction solid evolution and solid-liquid interface propagation velocity are calculated. The influence, on the deposit microstructural features, of process parameters like the atomization gas pressure, the pouring tube orifice diameter, the geometrical features of the atomization device,the potency of , pre-existing or injected as reinforcement, nucleation sites, the wetting angle between the liquid melt bnd impurity particles acting as preferred nucleation sites, the in-flight distance of the solidifying droplets in the atomization chamber, i5 evaluated. As a result of the evaluation, appropriate choice of the adjustable process parameters for the production of powders and/or deposits with desired grain size and microstructure, can be made.展开更多
Ni-CeO2 nanocomposite coatings with different CeO2 contents were prepared by codeposition of Ni and CeO2 nanoparticles with an average particle size of 7 nm onto pure Ni surfaces from a nickel sulfate. The CeO2 nanopa...Ni-CeO2 nanocomposite coatings with different CeO2 contents were prepared by codeposition of Ni and CeO2 nanoparticles with an average particle size of 7 nm onto pure Ni surfaces from a nickel sulfate. The CeO2 nanoparticles were dispersed in the electrodeposited nanocrystalline Ni grains (with a size range of 10-30 nm). The isothermal oxidation behaviours of Ni-CeO2 nanocomposite coatings with two different CeO2 particles contents and the electrodeposited pure Ni coating were comparatively investigated in order to elucidate the effect of CeO2 at different temperatures and also CeO2 contents on the oxidation behaviour of Ni-CeO2 nanocomposite coatings. The results show that the as-codeposited Ni-CeO2 nanocomposite coatings have a superior oxidation resistance compared with the electrodeposited pure Ni coating at 800 °C due to the codeposited CeO2 nanoparticles blocking the outward diffusion of nickel along the grain boundaries. However, the effects of CeO2 particles on the oxidation resistance significantly decrease at 1050 °C and 1150 °C due to the outward-volume diffusion of nickel controlling the oxidation growth mechanism, and the content of CeO2 has little influence on the oxidation.展开更多
基金Project(2009AA050702)supported by the National High-tech Research and Development Program of ChinaProject(GC06A212)supported by the Scientific Technology Project of Heilongjiang Province,China+2 种基金Project(50871033)supported by the National Natural Science Foundation of ChinaProject(208181)supported by the Key Project of Ministry of Education,ChinaProject(HEUCF101002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Mg-Li-Gd alloys were prepared by electrochemical codeposition from LiCl-KCl-MgCl 2 -Gd 2 O 3 melts on molybdenum electrode with constant current density at 823 and 973 K. The microstructure of the Mg-Li-Gd alloys was analyzed by X-ray diffraction (XRD), optical microscopy (OM) and scanning electron microscopy (SEM). The results show that magnesium and gadolinium deposit mainly in the first 30 min, and the alloy obtained contains 96.53% Mg, 0.27% Li and 3.20% Gd (mass fraction). Then, the reduction of lithium ions occurs quickly. The composition of alloy can be adjusted by controlling electrolysis time or Gd 2 O 3 concentration in LiCl-KCl melts. With the addition of Gd into Mg-Li alloys, the corrosion resistance of the alloys is enhanced. XRD results suggest that Mg 3 Gd and Mg 2 Gd can be formed in Mg-Li-Gd alloys. The distribution of Gd element in Mg-Li-Gd alloys indicates that Gd element mainly distributes at the grain boundaries of Mg-Li-Gd alloys.
文摘The cyclic voltammetry, chronopotentiometry and chronoamperometry were used to study the behaviors of Fe 2+ on Pt, Cu, Ag and Ti electrodes in urea NaBr melt at 373 K. Electroreduction of Fe 2+ to metallic Fe is irreversible in one step. The exchange current density determined on Ti electrode is 2 68×10 -5 A·cm -2 . Sm 3+ does not reduce to Sm alone, but can be inductively codeposited with Fe 2+ . Sm Fe alloy film contained over 90% Sm (mass fraction) can be obtained by potentiostatic electrolysis and galvanostatic electrolysis on Cu substrate. The Sm content in the alloy is related to the cathode potential, current density and the Sm 3+ /Fe 2+ molar ratio. The surface state of the Sm Fe deposit was studied by scanning electron microscopy.
文摘Effects of five typical heat treatment processes on the damping properties and the damping peak of 6061Al/SiC p MMC fabricated by spray codeposition were studied. The results show that the internal friction spectra of various heat treated samples exhibit the damping peak versus temperature between 130 ℃ and 200 ℃. Furthermore, the peak temperature as well as the peak height increases with increasing frequencies. By Arrhenius equation the active energy of the damping peak can be gotten, which is above 1 eV. On the other hand, different quenching treatments affect the damping peak remarkably, when the rate of cooling is above that of water quenching, the damping peak will shift to higher temperature as cooling speed is enhanced.
文摘The mechanism of the electrolytic codeposition of Y Al alloy in molten LiF AlF 3 Al 2O 3 YF 3, LiF YF 3 Y 2O 3 AlF 3 and LiF YF 3 Y 2O 3 Al 2O 3 systems was investigated by means of cyclic voltammetry. The electrodeposited products were analysed by X ray diffraction. The results show that the electrolytic codeposition of Y Al alloy in the LiF YF 3 Y 2O 3 Al 2O 3 system without AlF 3 can be achieved at the same potential for Y(Ⅲ) and Al(Ⅲ) which have great difference in deposition potential. It is beneficial to codeposition of Y(Ⅲ) and Al(Ⅲ) when temperature rises. The potential of beginning codeposition is about -0.85 V ( vs Pt reference electrode), but only at the potential of -0.95 V or more negative can Y based Al alloy containing a great amount of yttrium be obtained.
文摘The electrolytic codeposition of lanthanum-cobalt in the melt consisting of urea-NaCl-NaAc-CoCl2-LaCl3 was studied by means of cyclic voltammetry, electron probe analyser, X-ray diffraction. Cathodic potential, current density, La3+/Co2+ molar ratio in the melt and the electrode substrates all exercise influence on the content of lanthanum deposied. The deposites consist of cobalt and lanthanum, but they don't form any intermetallic compound.
基金supported by the National High-Tech Research and Development Program of China (No. 2006AA03Z510)the National Natural Science Foundation of China (No. 50871033)+1 种基金the Scientific Technology Project of Heilong jiang Province, China (No. GC06A212)the fund from Harbin Municipal Science & Technology Bureau (No. 2006PFXXG006)
文摘Electrochemical codeposition of Mg-Li alloys on molybdenum electrodes was investigated in LiCl-KCl(50 wt.%:50 wt.%) melts containing different concentrations of MgCl2 at 973 K.Cyclic voltammograms show that the underpotential deposition of lithium on pre-deposited magnesium leads to the formation of liquid Mg-Li alloys.The deposition potentials of Mg(II) and Li(I) ions gradually near each other with MgCl2 concentration decreasing.Mg-Li alloys with typical α + β phases could be obtained by potentiostatic electrolysis from LiCl-KCl melts containing 5 wt.% MgCl2 at -2.25 V vs.Ag/AgCl(cathodic current density 1.70 A·cm-2) for 2.5 h.α phase, α + β phases, and β phase Mg-Li alloys with different lithium contents were obtained by potentiostatic electrolysis from LiCl-KCl melts with the different concentrations of MgCl2.The samples were characterized by X-ray diffraction and scanning electron microscopy.
文摘In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate where they impact and collect as rapidly solidified splats. Relatively high rates of solidification are achieved as a result of the thinness of the splats and the rapid heat extraction during flight and upon impacting with the substrate. The processing method uses codeposition of the metallic semi-solidified droplets (metallic matrix) with the injected reinforcement ceramic particles. In the present paper, the microstructures, mechanical properties, interfacial properties, thermal stability and aging behaviour of spray atomized and codeposited Al-Li-X MMC's (injected X=SiC, Al2O3) are reported and correlated to the processing conditions.
文摘The influence of the injection of reinforcing particles (for the production of metal matrix composites and of the droplets-to-substrate heat transfer on the resulting microstructural uniformity of spray atomized and codeposited composite material is analyzed. The reinforcement particles injection velocity has to be limited between an upper and a lower critical values. in order to ensure entrapment into the matrix droplets in flight. The thermal history of the injected droplets during the deposition stage is calculated with the assumption that the in-flight solidifying droplets reach the substrate while containing still at least 20% liquid volume fraction, in order to avoid porosity of the deposited material. The substrate to pouring-tube orifice distance where that condition is achieved depends strongly on the atomization pressure and the convective heat transfer coefficient of the substrate. It is demonstrated that 'tailoring' the microstructures and the reinforcement volume percent in the deposited material is feasible. The critical process parameters : the atomization pressure, the melt flow rate. the substrate to pouring-tube orifice distance, the reinforcement particles injection location and rate can all be adequately chosen in order to obtain any desired microstructure, grain size, reinforcement volume percent, with the additional benefit, if wanted, of rapid solidification processing
文摘Fluid mechanics, heat transfer and liquid-to-solid phase transformation are assessed in optimizing the spray atomization and codeposition process parameters for size refinement and microstructural uniformity of the deposited material. Atomization gas velocities, atomized droplets velocities, convective heat transfer coefficients, thermal histories of the solidifying droplets, freezing rates, fraction solid evolution and solid-liquid interface propagation velocity are calculated. The influence, on the deposit microstructural features, of process parameters like the atomization gas pressure, the pouring tube orifice diameter, the geometrical features of the atomization device,the potency of , pre-existing or injected as reinforcement, nucleation sites, the wetting angle between the liquid melt bnd impurity particles acting as preferred nucleation sites, the in-flight distance of the solidifying droplets in the atomization chamber, i5 evaluated. As a result of the evaluation, appropriate choice of the adjustable process parameters for the production of powders and/or deposits with desired grain size and microstructure, can be made.
基金Project(11531319)supported by Scientific Research Fund of Heilongjiang Provincial Education Department,China
文摘Ni-CeO2 nanocomposite coatings with different CeO2 contents were prepared by codeposition of Ni and CeO2 nanoparticles with an average particle size of 7 nm onto pure Ni surfaces from a nickel sulfate. The CeO2 nanoparticles were dispersed in the electrodeposited nanocrystalline Ni grains (with a size range of 10-30 nm). The isothermal oxidation behaviours of Ni-CeO2 nanocomposite coatings with two different CeO2 particles contents and the electrodeposited pure Ni coating were comparatively investigated in order to elucidate the effect of CeO2 at different temperatures and also CeO2 contents on the oxidation behaviour of Ni-CeO2 nanocomposite coatings. The results show that the as-codeposited Ni-CeO2 nanocomposite coatings have a superior oxidation resistance compared with the electrodeposited pure Ni coating at 800 °C due to the codeposited CeO2 nanoparticles blocking the outward diffusion of nickel along the grain boundaries. However, the effects of CeO2 particles on the oxidation resistance significantly decrease at 1050 °C and 1150 °C due to the outward-volume diffusion of nickel controlling the oxidation growth mechanism, and the content of CeO2 has little influence on the oxidation.