Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) rods were abraded to different surface roughnesses using different types of waterproof abrasive papers and sometimes polishing pastes, and the compressive deformat...Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) rods were abraded to different surface roughnesses using different types of waterproof abrasive papers and sometimes polishing pastes, and the compressive deformation behavior was examined. The results show that the yield strength of the BMG is hardly affected while the compressive plasticity increases from 2.3% to 4.5% with decreasing the surface roughness. Observation of the fractured samples under a scanning electron microscope indicates that the rise in plasticity is accompanied with an increase in shear band density. The results suggest that it is necessary to reduce the surface roughness of BMGs for achieving a large plasticity.展开更多
Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etch...Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed.展开更多
Inspired by research into the association between icosahedral local orders and the plasticity of metallic glasses(MGs),beryllium(Be) is added to the icosahedral quasi-crystal forming alloy Zr40Ti40Ni20. In this way, b...Inspired by research into the association between icosahedral local orders and the plasticity of metallic glasses(MGs),beryllium(Be) is added to the icosahedral quasi-crystal forming alloy Zr40Ti40Ni20. In this way, bulk metallic glasses(BMGs) with favorable compressive plasticity are fabricated. Therein, the icosahedral quasi-crystalline phase is the main competing phase of amorphous phases and icosahedral local orders are the main local atomic motifs in amorphous phases.The alloys of(Zr40Ti40Ni20)76Be24and (Zr40Ti40Ni20)72Be28with their greater plastic strain capacity show similar characteristics to highly plastic amorphous systems: The serrated flow of compression curves always follows a near-exponential distribution. The primary and secondary shear bands intersect each other, bifurcate, and bend. Typical vein patterns are densely distributed on the fracture surfaces. The relaxation enthalpy of four MGs is linearly correlated with the plastic strain, that is, the greater the relaxation enthalpy, the larger the plastic strain.展开更多
Mg65Cu20Zn5Y9Zr1 bulk metallic glass matrix composite with a diameter of 2 mm was produced by copper mold casting. Upon cooling the Mg65Cu20Zn5Y9Zr1 melt, Mg2Cu acicular crystalline phase precipitates uniformly with a...Mg65Cu20Zn5Y9Zr1 bulk metallic glass matrix composite with a diameter of 2 mm was produced by copper mold casting. Upon cooling the Mg65Cu20Zn5Y9Zr1 melt, Mg2Cu acicular crystalline phase precipitates uniformly with a size of about 20 μm long and 1 μm thick while the remaining melt undergoes glass transition. Room temperature compression tests revealed that the high fracture strength up to 830 MPa and the plastic strain of 2.4% before failure are obtained for the Mg-based bulk metallic glass matrix composite. The formation of the Mg2Cu phase was proposed to contribute to high strength and plastic deformation of the material.展开更多
Fe40Ni40P14B6 bulk metallic glass rods have been prepared by water quenching the fluxed alloy. The deformation behavior was investigated by nanoindentation tests and compressing tests. The average hardness and elastic...Fe40Ni40P14B6 bulk metallic glass rods have been prepared by water quenching the fluxed alloy. The deformation behavior was investigated by nanoindentation tests and compressing tests. The average hardness and elastic modulus of the as-prepared Fe40Ni40P14B6 BMG (bulk metallic glass) measured by nanoindentation tests are 8.347 and 176.61 GPa respectively. The displace- ment-load curve shows “pop-in” characteristics which correspond to the loading rate bursts. Many shear bands around the indent were observed. The as-prepared Fe-based BMG exhibits a compressive plastic strain of 5.21%, which is much larger than that of other Fe-based glassy alloys and most of other BMGs.展开更多
The Zr62.55Cu17.55Ni9.9Al10 bulk metallic glass (BMG) was prepared by using copper-mold suction-casting. X-ray diffraction and differential scanning calorimetry were utilized to determine its structure and thermal s...The Zr62.55Cu17.55Ni9.9Al10 bulk metallic glass (BMG) was prepared by using copper-mold suction-casting. X-ray diffraction and differential scanning calorimetry were utilized to determine its structure and thermal stability. Uniaxial compression and Rockwell indenta- tion tests were adopted to study the plastic deformation behavior at room temperature. The results show that the glass transition temperature and the onset temperature of exothermic reaction of the BMG are 651.5 and 748 K, respectively. During the compression test, the BMGs undergo an engineering strain of about 2.5%, i.e., true strain of 2.8%, and then fracture. The BMGs deform via the formation and propagation of shear bands. Under indentation loading, the BMGs deform through the formation of radiation-like and circular shear bands. The circular shear bands form earlier than the radiation-like ones, The formation mechanism of shear bands in the BMGs was analyzed and discussed.展开更多
X-ray fluorescence spectrometry was used to detect the content of eight elements in metal coating smeared on waste plastics,and effects of sample cups,elements in plastic substrate,and interaction of elements in metal...X-ray fluorescence spectrometry was used to detect the content of eight elements in metal coating smeared on waste plastics,and effects of sample cups,elements in plastic substrate,and interaction of elements in metal coating on detection results were analyzed. The results show that the RSD of the method used to detect element content in the metal coating smeared on the waste plastics ranged from 0.008% to 0.044%; the determination range of the eight elements was 0.002%-52.0%,and their detection limit ranged from 0.0002% to 0.0008%. The determination results of X-ray fluorescence spectrometry were consistent with that of ICP-AES. The method can provide technical support for the determination of damage and pollution caused by metal coating smeared on waste plastics.展开更多
The lack of the long-range order in the atomic structure challenges the identification of the structural defects,akin to dislocations in crystals,which are responsible for predicting plastic events and mechanical fail...The lack of the long-range order in the atomic structure challenges the identification of the structural defects,akin to dislocations in crystals,which are responsible for predicting plastic events and mechanical failure in metallic glasses(MGs).Although vast structural indicators have been proposed to identify the structural defects,quantitatively gauging the correlations between these proposed indicators based on the undeformed configuration and the plasticity of MGs upon external loads is still lacking.Here,we systematically analyze the ability of these indicators to predict plastic events in a representative MG model using machine learning method.Moreover,we evaluate the influences of coarse graining method and medium-range order on the predictive power.We demonstrate that indicators relevant to the low-frequency vibrational modes reveal the intrinsic structural characteristics of plastic rearrangements.Our work makes an important step towards quantitative assessments of given indicators,and thereby an effective identification of the structural defects in MGs.展开更多
Elastic metallic-plastic pads(EMP) were irradiated by low energy aluminum ion in a metal vapor vacuum arc(MEVVA) 80-10 implantation system. The samples were irradiated with 20keV Al ion with the influx from 1...Elastic metallic-plastic pads(EMP) were irradiated by low energy aluminum ion in a metal vapor vacuum arc(MEVVA) 80-10 implantation system. The samples were irradiated with 20keV Al ion with the influx from 1×1015 to 1×1016 Al/cm2. Then the as-irradiated samples were measured by ESCA, XRD, AFM/FFM and a nano-probe. It is found that the hardness of as-irradiated samples is 5-6 times as that of the pristine ones. The worn depth of sample implanted at ion influx of 1×1016 Al/cm2 is about one eighth of that of the pristine sample at the same load. The XRD results show that there are some Al2O3 and AlF3 intermingled with the phase of polytetrafluoroethylene(PTFE). The experimental results reveal that the tribological properties of EMP can be significantly improved by the ion beam surface modification.展开更多
An interesting phenomenon of cooling-rate induced brittleness in Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) was reported. It was found that the as-cast BMG specimens exhibited a brittle-ductile transition w...An interesting phenomenon of cooling-rate induced brittleness in Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) was reported. It was found that the as-cast BMG specimens exhibited a brittle-ductile transition when the larger specimens were machined into smaller specimens through removing the cast-softening surface layer by layer. After compression tests, the as-machined small specimens, owing to the absence of the cast-softening surface, displayed highly dense and intersecting shear bands, and extensive plastic deformation. This is in contrast to the catastrophic failure and low deformability in the as-cast large specimens. More free volume was detected in the smaller as-fractured specimens, by differential scanning calorimetry, which may be attributed to the occurrence of strain softening and increased plasticity. Compared with the relatively smooth fracture surface in the smaller specimens, the larger specimens showed more diverse features on the fracture surface due to their graded structures.展开更多
Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×...Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×10^-2s^-1were systematically investigated by room-temperatureuniaxialcompression test.In the condition of an aspect ratio of 1:1, the superplasticity can be clearly observed for Cu50Zr40Ti10BMG when the loading rate is1×10^-4s^-1, while for Cu50Zr40Ti10-xNix(x=1-3, mole fraction, %) BMGs when the loading rate is1×10^-2s^-1. The plastic strain (εp), yielding strength (σy) and fracture strength (σf) of the studied Cu-based BMGs significantly depend on the aspect ratio and the loading rate. In addition, theσyof the studied Cu-based BMGs with an aspect ratio of 1:1 is close to the σfof those with the other aspect ratios when the loading rate is1×10^-2s^-1. The mechanism for the mechanical response to the loading rate and the aspect ratiowas also discussed.展开更多
Metallic glasses (MGs) have been found to exhibit unexpected ultrasonic-vibration-induced plasticity (UVIP),which provides a promising way to realize room temperature processing and molding of MGs.However,whether all ...Metallic glasses (MGs) have been found to exhibit unexpected ultrasonic-vibration-induced plasticity (UVIP),which provides a promising way to realize room temperature processing and molding of MGs.However,whether all MGs possessing UVIP remains a mystery.展开更多
Ferromagnetic bulk metallic glasses(FBMGs)possess excellent soft magnetic properties,good corrosion resistance,and high strength.Unfortunately,their commercial utility is limited by their brittleness.In this work,we r...Ferromagnetic bulk metallic glasses(FBMGs)possess excellent soft magnetic properties,good corrosion resistance,and high strength.Unfortunately,their commercial utility is limited by their brittleness.In this work,we report the enhancement in the room-temperature plasticity during the compression(25%)and bending flexibility of Fe_(74)Mo_(6)P_(13)C_(7) FBMG by using water quenching.The high-energy synchrotron X-ray measurements,high-resolution transmission electron microscopy,three-dimensional X-ray microtomog-raphy,and finite element simulation were performed to reveal the origin.It was found that the M-shape profile of residual stress improves the mechanical properties of FBMGs,particularly their plasticity.The reversal of the heat-transfer coefficient and cooling rate from the'vapor blanket'to'nucleate boiling'transition during water quenching processing is the main cause of the unusual profile of residual stress in glassy cylinders.Encouraged by the progress in developing flexible silicate glasses,this work highlights a processing method to improve plasticity and surmount technical barriers for the commercialization of FBMGs.展开更多
Metallic glasses(MGs)possess exceptional properties,but their properties consistently deteriorate over time,thereby resulting in increased complexity in processing.It thus poses a formidable challenge to the forming o...Metallic glasses(MGs)possess exceptional properties,but their properties consistently deteriorate over time,thereby resulting in increased complexity in processing.It thus poses a formidable challenge to the forming of long-term aged MGs.Here,we report ultrasonic vibration(UV)loading can lead to large plas-ticity and strong rejuvenation in significantly aged MGs within 1 s.A large UV-induced plasticity(UVIP)of 80%height reduction can be achieved in LaNiAl MG samples aged at 85%of its glass transition tem-perature(0.85 T_(g))for a duration of up to 1 month.The energy threshold required for UVIP monotonously increases with aging time.After the UV loading process,the aged samples show strong rejuvenation,with the relaxation enthalpy even surpassing that of as-cast samples.These findings suggest that UV loading is an effective technique for forming and rejuvenating aged MGs simultaneously,providing an alterna-tive avenue to explore the interplay between the property and microstructures as well as expanding the application prospects of MGs.展开更多
AIM:To compare efficacy and complications of par-tially covered self-expandable metal stent(pcSEMS)to plastic stent(PS)in patients treated for malignant,infrahilar biliary obstruction.METHODS:Multicenter prospective r...AIM:To compare efficacy and complications of par-tially covered self-expandable metal stent(pcSEMS)to plastic stent(PS)in patients treated for malignant,infrahilar biliary obstruction.METHODS:Multicenter prospective randomized clinical trial with treatment allocation to a pcWallstent(SEMS)or a 10 French PS.Palliative patients aged≥18,for infrahilar malignant biliary obstruction and a Karnofsky performance scale index>60%from 6 participating North American university centers.Primary endpoint was time to stent failure,with secondary outcomes of death,adverse events,Karnofsky performance score and short-form-36 scale administered on a three-monthly basis for up to 2 years.Survival analyses were performed for stent failure and death,with Cox proportional hazards regression models to determine significant predictive characteristics.RESULTS:Eighty-five patients were accrued over 37mo,42 were randomized to the SEMS group and 83patients were available for analyses.Time to stent failure was 385.3±52.5 d in the SEMS and 153.3±19.8 d in the PS group,P=0.006.Time to death did not differ between groups(192.3±23.4 d for SEMS vs211.5±28.0 d for PS,P=0.70).The only significant predictor was treatment allocation,relating to the time to stent failure(P=0.01).Amongst other measured outcomes,only cholangitis differed,being more common in the PS group(4.9%vs 24.5%,P=0.029).The small number of patients in follow-up limits longitudinal assessments of performance and quality of life.From an initially planned 120 patients,only 85 patients were recruited.CONCLUSION:Partially covered SEMS result in a longer duration till stent failure without increased complication rates,yet without accompanying measurable benefits in survival,performance,or quality of life.展开更多
The deformation, damage, fracture, plasticity and melting phenomenon induced by shear fracture were investigated and summarized for Zr-, Cu-, Ti- and Mg-based bulk metallic glasses (BMGs) and their composites. The s...The deformation, damage, fracture, plasticity and melting phenomenon induced by shear fracture were investigated and summarized for Zr-, Cu-, Ti- and Mg-based bulk metallic glasses (BMGs) and their composites. The shear fracture angles of these BMG materials often display obvious differences under compression and tension, and follow either the Mohr-Coulomb criterion or the unified tensile fracture criterion. The compressive plasticity of the composites is always higher than the tensile plasticity, leading to a significant inconsistency. The enhanced plasticity of BMG composites containing ductile dendrites compared to monolithic glasses strongly depends on the details of the microstructure of the composites. A deformation and damage mechanism of pseudo-plasticity, related to local cracking, is proposed to explain the inconsistency of plastic deformation under tension and compression. Besides, significant melting on the shear fracture surfaces was observed. It is suggested that melting is a common phenomenon in these materials with high strength and high elastic energy, as it is typical for BMGs and their composites failing under shear fracture. The melting mechanism can be explained by a combined effect of a significant temperature rise in the shear bands and the instantaneous release of the large amount of elastic energy stored in the material.展开更多
The unusual glass-forming ability(GFA) of the Zr48Cu36Ag8Al8 alloy and the high ductility of the Zr48Cu36Ag8Al8 metallic glass-matrix composites containing Ta powder were reported.The bulk metallic glass rod with a ...The unusual glass-forming ability(GFA) of the Zr48Cu36Ag8Al8 alloy and the high ductility of the Zr48Cu36Ag8Al8 metallic glass-matrix composites containing Ta powder were reported.The bulk metallic glass rod with a diameter of 25 mm was successfully synthesized using copper mold casting for the Zr48Cu36Ag8Al8 alloy.High GFA of this alloy was found to be related to a large supercooled liquid region and a quaternary eutectic point with low melting temperature.The bulk metallic glass matrix composites were prepared by introducing extra Ta particles into the Zr48Cu36Ag8Al8 melt.The composites consist of Ta particles homogenously distributed in the Zr48Cu36Ag8Al8 metallic glass matrix.The optimum content of Ta powder is 10at%for the composite with the highest plasticity,which shows a plastic strain of 31%.展开更多
The formation of bulk metallic glasses(BMGs) in the ternary Zr(56) Co(28-x)Al(16) and quaternary Zr(56) Co(28-x)CuxAl16(x=2, 4, 5, 6, 7, mole fraction, %) glassy alloys was investigated via the copper mo...The formation of bulk metallic glasses(BMGs) in the ternary Zr(56) Co(28-x)Al(16) and quaternary Zr(56) Co(28-x)CuxAl16(x=2, 4, 5, 6, 7, mole fraction, %) glassy alloys was investigated via the copper mold suction casting method. The main purpose of this work was to locate the optimal BMG-forming composition for the quaternary Zr Co(Cu)Al alloys and to improve the plasticity of the parent alloy. The X-ray diffractometry(XRD), transmission electron microscopy(TEM) and differential scanning calorimetry(DSC) were used to investigate the glassy alloys structure and their glass forming ability(GFA). In addition, the compression test, microhardness, nano-indentation and scanning electron microscopy(SEM) were utilized to discuss the possible mechanisms involved in the enhanced plasticity achievement. The highest GFA among Cu-containing alloys was found for the Zr(56) Co(22) Cu6 Al(16) alloy, which was similar to that of the base alloy. Furthermore, the plasticity of the base alloy increased significantly from 3.3% to 6% for the Zr(56) Co(22) Cu)6 Al(16) BMG. The variations in the plasticity and GFA of the alloys were discussed by considering the positive heat of mixing within Cu and Co elements.展开更多
The high temperature tensile and fracture behavior of Zr50Al40Cu10 metallic glass at the temperature range in the vicinity of glass transition were investigated. Tensile tests were carried out at room temperature, 350...The high temperature tensile and fracture behavior of Zr50Al40Cu10 metallic glass at the temperature range in the vicinity of glass transition were investigated. Tensile tests were carried out at room temperature, 350-420 ℃, and in the supercooled liquid region temperature range, respectively. Obvious plastic deformation was initiated at temperature about 80 °C lower than the glass transition temperature. The ultimate tensile strength decreases with the increase of testing temperature and the ductility increases with temperature. At temperature higher than Tg, viscous flow of Non-Newtonian fluid led to super plastic deformation behavior. The deformation process under tension was inhomogeneous, and remarkable serrations were observed on the stress-strain curve near glass transition temperature.展开更多
基金Projects (50771064,50831003) supported by the National Natural Science Foundation of ChinaProject (10PJ1405900) supported by Shanghai Pujiang Program,China
文摘Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) rods were abraded to different surface roughnesses using different types of waterproof abrasive papers and sometimes polishing pastes, and the compressive deformation behavior was examined. The results show that the yield strength of the BMG is hardly affected while the compressive plasticity increases from 2.3% to 4.5% with decreasing the surface roughness. Observation of the fractured samples under a scanning electron microscope indicates that the rise in plasticity is accompanied with an increase in shear band density. The results suggest that it is necessary to reduce the surface roughness of BMGs for achieving a large plasticity.
基金Projects(50874045,51301194)supported by the National Natural Science Foundation of ChinaProject(2144057)supported by the Natural Science Foundation of Beijing Municipality,China
文摘Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed.
基金supported by the National Key R&D Program of China (Grant No. 2018YFA0703602)the National Natural Science Foundation of China (Grant Nos. 51871193, 52271155 and 52271154)+2 种基金the Natural Science Foundation for Excellent Young Scholars of Hebei Province (Grant No. E2021203050)the Hundred Talent Program of Hebei Province (Grant No. E2020050018)the Hebei Province Innovation Ability Promotion Project (Grant No. 22567609H)。
文摘Inspired by research into the association between icosahedral local orders and the plasticity of metallic glasses(MGs),beryllium(Be) is added to the icosahedral quasi-crystal forming alloy Zr40Ti40Ni20. In this way, bulk metallic glasses(BMGs) with favorable compressive plasticity are fabricated. Therein, the icosahedral quasi-crystalline phase is the main competing phase of amorphous phases and icosahedral local orders are the main local atomic motifs in amorphous phases.The alloys of(Zr40Ti40Ni20)76Be24and (Zr40Ti40Ni20)72Be28with their greater plastic strain capacity show similar characteristics to highly plastic amorphous systems: The serrated flow of compression curves always follows a near-exponential distribution. The primary and secondary shear bands intersect each other, bifurcate, and bend. Typical vein patterns are densely distributed on the fracture surfaces. The relaxation enthalpy of four MGs is linearly correlated with the plastic strain, that is, the greater the relaxation enthalpy, the larger the plastic strain.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50225103, 50471001 and 50631010).
文摘Mg65Cu20Zn5Y9Zr1 bulk metallic glass matrix composite with a diameter of 2 mm was produced by copper mold casting. Upon cooling the Mg65Cu20Zn5Y9Zr1 melt, Mg2Cu acicular crystalline phase precipitates uniformly with a size of about 20 μm long and 1 μm thick while the remaining melt undergoes glass transition. Room temperature compression tests revealed that the high fracture strength up to 830 MPa and the plastic strain of 2.4% before failure are obtained for the Mg-based bulk metallic glass matrix composite. The formation of the Mg2Cu phase was proposed to contribute to high strength and plastic deformation of the material.
文摘Fe40Ni40P14B6 bulk metallic glass rods have been prepared by water quenching the fluxed alloy. The deformation behavior was investigated by nanoindentation tests and compressing tests. The average hardness and elastic modulus of the as-prepared Fe40Ni40P14B6 BMG (bulk metallic glass) measured by nanoindentation tests are 8.347 and 176.61 GPa respectively. The displace- ment-load curve shows “pop-in” characteristics which correspond to the loading rate bursts. Many shear bands around the indent were observed. The as-prepared Fe-based BMG exhibits a compressive plastic strain of 5.21%, which is much larger than that of other Fe-based glassy alloys and most of other BMGs.
基金supported by the National Natural Science Foundation of China (Nos50971046,50771037,and 50371020)the Doctoral Fund of the Ministry of Education of China (No200805620004)
文摘The Zr62.55Cu17.55Ni9.9Al10 bulk metallic glass (BMG) was prepared by using copper-mold suction-casting. X-ray diffraction and differential scanning calorimetry were utilized to determine its structure and thermal stability. Uniaxial compression and Rockwell indenta- tion tests were adopted to study the plastic deformation behavior at room temperature. The results show that the glass transition temperature and the onset temperature of exothermic reaction of the BMG are 651.5 and 748 K, respectively. During the compression test, the BMGs undergo an engineering strain of about 2.5%, i.e., true strain of 2.8%, and then fracture. The BMGs deform via the formation and propagation of shear bands. Under indentation loading, the BMGs deform through the formation of radiation-like and circular shear bands. The circular shear bands form earlier than the radiation-like ones, The formation mechanism of shear bands in the BMGs was analyzed and discussed.
基金Supported by Project of Ningbo Entry-Exit Inspection and Quarantine Bureau(K21-2013)
文摘X-ray fluorescence spectrometry was used to detect the content of eight elements in metal coating smeared on waste plastics,and effects of sample cups,elements in plastic substrate,and interaction of elements in metal coating on detection results were analyzed. The results show that the RSD of the method used to detect element content in the metal coating smeared on the waste plastics ranged from 0.008% to 0.044%; the determination range of the eight elements was 0.002%-52.0%,and their detection limit ranged from 0.0002% to 0.0008%. The determination results of X-ray fluorescence spectrometry were consistent with that of ICP-AES. The method can provide technical support for the determination of damage and pollution caused by metal coating smeared on waste plastics.
基金the Science Challenge Project(Grant No.TZ2018004)the NSAF Joint Program(Grant No.U1930402)+1 种基金the National Natural Science Foundation of China(Grant No.51801230)the National Key Research and Development Program of China(Grant No.2018YFA0703601).
文摘The lack of the long-range order in the atomic structure challenges the identification of the structural defects,akin to dislocations in crystals,which are responsible for predicting plastic events and mechanical failure in metallic glasses(MGs).Although vast structural indicators have been proposed to identify the structural defects,quantitatively gauging the correlations between these proposed indicators based on the undeformed configuration and the plasticity of MGs upon external loads is still lacking.Here,we systematically analyze the ability of these indicators to predict plastic events in a representative MG model using machine learning method.Moreover,we evaluate the influences of coarse graining method and medium-range order on the predictive power.We demonstrate that indicators relevant to the low-frequency vibrational modes reveal the intrinsic structural characteristics of plastic rearrangements.Our work makes an important step towards quantitative assessments of given indicators,and thereby an effective identification of the structural defects in MGs.
文摘Elastic metallic-plastic pads(EMP) were irradiated by low energy aluminum ion in a metal vapor vacuum arc(MEVVA) 80-10 implantation system. The samples were irradiated with 20keV Al ion with the influx from 1×1015 to 1×1016 Al/cm2. Then the as-irradiated samples were measured by ESCA, XRD, AFM/FFM and a nano-probe. It is found that the hardness of as-irradiated samples is 5-6 times as that of the pristine ones. The worn depth of sample implanted at ion influx of 1×1016 Al/cm2 is about one eighth of that of the pristine sample at the same load. The XRD results show that there are some Al2O3 and AlF3 intermingled with the phase of polytetrafluoroethylene(PTFE). The experimental results reveal that the tribological properties of EMP can be significantly improved by the ion beam surface modification.
基金Project(2012M511401)supported by China Postdoctoral Science FoundationProject(12JJ5018)supported by Hunan Provincial Natural Science Foundation of China+1 种基金Project(2012RS4006)supported by Hunan Provincial Science and Technology Plan of ChinaProject(CSUZC2012028)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘An interesting phenomenon of cooling-rate induced brittleness in Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) was reported. It was found that the as-cast BMG specimens exhibited a brittle-ductile transition when the larger specimens were machined into smaller specimens through removing the cast-softening surface layer by layer. After compression tests, the as-machined small specimens, owing to the absence of the cast-softening surface, displayed highly dense and intersecting shear bands, and extensive plastic deformation. This is in contrast to the catastrophic failure and low deformability in the as-cast large specimens. More free volume was detected in the smaller as-fractured specimens, by differential scanning calorimetry, which may be attributed to the occurrence of strain softening and increased plasticity. Compared with the relatively smooth fracture surface in the smaller specimens, the larger specimens showed more diverse features on the fracture surface due to their graded structures.
基金Projects(50874045,51301194)supported by the National Natural Science Foundation of ChinaProject(2144057)supported by the Beijing Natural Science Foundation,China
文摘Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×10^-2s^-1were systematically investigated by room-temperatureuniaxialcompression test.In the condition of an aspect ratio of 1:1, the superplasticity can be clearly observed for Cu50Zr40Ti10BMG when the loading rate is1×10^-4s^-1, while for Cu50Zr40Ti10-xNix(x=1-3, mole fraction, %) BMGs when the loading rate is1×10^-2s^-1. The plastic strain (εp), yielding strength (σy) and fracture strength (σf) of the studied Cu-based BMGs significantly depend on the aspect ratio and the loading rate. In addition, theσyof the studied Cu-based BMGs with an aspect ratio of 1:1 is close to the σfof those with the other aspect ratios when the loading rate is1×10^-2s^-1. The mechanism for the mechanical response to the loading rate and the aspect ratiowas also discussed.
基金financially supported by the Key Basic and Applied Research Program of Guangdong Province, China (No.2019B030302010)the National Natural Science Foundation of China (Nos.52371160,51901243,52122105 and 51971150)the National Key Research and Development Program of China (No.2018YFA0703604)。
文摘Metallic glasses (MGs) have been found to exhibit unexpected ultrasonic-vibration-induced plasticity (UVIP),which provides a promising way to realize room temperature processing and molding of MGs.However,whether all MGs possessing UVIP remains a mystery.
基金National Natural Science Foundation of China(No.52171165)。
文摘Ferromagnetic bulk metallic glasses(FBMGs)possess excellent soft magnetic properties,good corrosion resistance,and high strength.Unfortunately,their commercial utility is limited by their brittleness.In this work,we report the enhancement in the room-temperature plasticity during the compression(25%)and bending flexibility of Fe_(74)Mo_(6)P_(13)C_(7) FBMG by using water quenching.The high-energy synchrotron X-ray measurements,high-resolution transmission electron microscopy,three-dimensional X-ray microtomog-raphy,and finite element simulation were performed to reveal the origin.It was found that the M-shape profile of residual stress improves the mechanical properties of FBMGs,particularly their plasticity.The reversal of the heat-transfer coefficient and cooling rate from the'vapor blanket'to'nucleate boiling'transition during water quenching processing is the main cause of the unusual profile of residual stress in glassy cylinders.Encouraged by the progress in developing flexible silicate glasses,this work highlights a processing method to improve plasticity and surmount technical barriers for the commercialization of FBMGs.
基金supported by the Key Basic and Applied Research Program of Guangdong Province,China(Grant No.2019B030302010)the NSF of China(Grant Nos.52122105,51971150,51901243)+1 种基金the Science and Technology Innovation Commission Shenzhen(Grants No.RCJC20221008092730037 and 20220804091920001)the National Key Research and Development Program of China(Grant No.2018YFA0703605).
文摘Metallic glasses(MGs)possess exceptional properties,but their properties consistently deteriorate over time,thereby resulting in increased complexity in processing.It thus poses a formidable challenge to the forming of long-term aged MGs.Here,we report ultrasonic vibration(UV)loading can lead to large plas-ticity and strong rejuvenation in significantly aged MGs within 1 s.A large UV-induced plasticity(UVIP)of 80%height reduction can be achieved in LaNiAl MG samples aged at 85%of its glass transition tem-perature(0.85 T_(g))for a duration of up to 1 month.The energy threshold required for UVIP monotonously increases with aging time.After the UV loading process,the aged samples show strong rejuvenation,with the relaxation enthalpy even surpassing that of as-cast samples.These findings suggest that UV loading is an effective technique for forming and rejuvenating aged MGs simultaneously,providing an alterna-tive avenue to explore the interplay between the property and microstructures as well as expanding the application prospects of MGs.
基金Supported by Research Funding from Boston Scientific Inc to Barkun ANResearch Funding from Cook Endoscopy to Branch MSResearch Funding from Pentax Corp to Kowalski TE
文摘AIM:To compare efficacy and complications of par-tially covered self-expandable metal stent(pcSEMS)to plastic stent(PS)in patients treated for malignant,infrahilar biliary obstruction.METHODS:Multicenter prospective randomized clinical trial with treatment allocation to a pcWallstent(SEMS)or a 10 French PS.Palliative patients aged≥18,for infrahilar malignant biliary obstruction and a Karnofsky performance scale index>60%from 6 participating North American university centers.Primary endpoint was time to stent failure,with secondary outcomes of death,adverse events,Karnofsky performance score and short-form-36 scale administered on a three-monthly basis for up to 2 years.Survival analyses were performed for stent failure and death,with Cox proportional hazards regression models to determine significant predictive characteristics.RESULTS:Eighty-five patients were accrued over 37mo,42 were randomized to the SEMS group and 83patients were available for analyses.Time to stent failure was 385.3±52.5 d in the SEMS and 153.3±19.8 d in the PS group,P=0.006.Time to death did not differ between groups(192.3±23.4 d for SEMS vs211.5±28.0 d for PS,P=0.70).The only significant predictor was treatment allocation,relating to the time to stent failure(P=0.01).Amongst other measured outcomes,only cholangitis differed,being more common in the PS group(4.9%vs 24.5%,P=0.029).The small number of patients in follow-up limits longitudinal assessments of performance and quality of life.From an initially planned 120 patients,only 85 patients were recruited.CONCLUSION:Partially covered SEMS result in a longer duration till stent failure without increased complication rates,yet without accompanying measurable benefits in survival,performance,or quality of life.
基金financially supported by the National Natural Science Foundation of China(NSFC)under Gtrant No.50401019the“Hun-dred of Talent Project"by Chinese Academy of Sciences+1 种基金National Outstanding Young Scientist Foundation for Z.F.Zhang under Grant No.50625103the financial support of the Alexander-von-Humboldt(AvH)Foundation.
文摘The deformation, damage, fracture, plasticity and melting phenomenon induced by shear fracture were investigated and summarized for Zr-, Cu-, Ti- and Mg-based bulk metallic glasses (BMGs) and their composites. The shear fracture angles of these BMG materials often display obvious differences under compression and tension, and follow either the Mohr-Coulomb criterion or the unified tensile fracture criterion. The compressive plasticity of the composites is always higher than the tensile plasticity, leading to a significant inconsistency. The enhanced plasticity of BMG composites containing ductile dendrites compared to monolithic glasses strongly depends on the details of the microstructure of the composites. A deformation and damage mechanism of pseudo-plasticity, related to local cracking, is proposed to explain the inconsistency of plastic deformation under tension and compression. Besides, significant melting on the shear fracture surfaces was observed. It is suggested that melting is a common phenomenon in these materials with high strength and high elastic energy, as it is typical for BMGs and their composites failing under shear fracture. The melting mechanism can be explained by a combined effect of a significant temperature rise in the shear bands and the instantaneous release of the large amount of elastic energy stored in the material.
基金supported by Grant-In-Aid for Scientific Research(C)(No.19560689)
文摘The unusual glass-forming ability(GFA) of the Zr48Cu36Ag8Al8 alloy and the high ductility of the Zr48Cu36Ag8Al8 metallic glass-matrix composites containing Ta powder were reported.The bulk metallic glass rod with a diameter of 25 mm was successfully synthesized using copper mold casting for the Zr48Cu36Ag8Al8 alloy.High GFA of this alloy was found to be related to a large supercooled liquid region and a quaternary eutectic point with low melting temperature.The bulk metallic glass matrix composites were prepared by introducing extra Ta particles into the Zr48Cu36Ag8Al8 melt.The composites consist of Ta particles homogenously distributed in the Zr48Cu36Ag8Al8 metallic glass matrix.The optimum content of Ta powder is 10at%for the composite with the highest plasticity,which shows a plastic strain of 31%.
基金Iran University of Science and Technology for the financial support
文摘The formation of bulk metallic glasses(BMGs) in the ternary Zr(56) Co(28-x)Al(16) and quaternary Zr(56) Co(28-x)CuxAl16(x=2, 4, 5, 6, 7, mole fraction, %) glassy alloys was investigated via the copper mold suction casting method. The main purpose of this work was to locate the optimal BMG-forming composition for the quaternary Zr Co(Cu)Al alloys and to improve the plasticity of the parent alloy. The X-ray diffractometry(XRD), transmission electron microscopy(TEM) and differential scanning calorimetry(DSC) were used to investigate the glassy alloys structure and their glass forming ability(GFA). In addition, the compression test, microhardness, nano-indentation and scanning electron microscopy(SEM) were utilized to discuss the possible mechanisms involved in the enhanced plasticity achievement. The highest GFA among Cu-containing alloys was found for the Zr(56) Co(22) Cu6 Al(16) alloy, which was similar to that of the base alloy. Furthermore, the plasticity of the base alloy increased significantly from 3.3% to 6% for the Zr(56) Co(22) Cu)6 Al(16) BMG. The variations in the plasticity and GFA of the alloys were discussed by considering the positive heat of mixing within Cu and Co elements.
基金financially supported by the National Natural Sciences Foundation of China(Grant No.51171119 and No.51401129)
文摘The high temperature tensile and fracture behavior of Zr50Al40Cu10 metallic glass at the temperature range in the vicinity of glass transition were investigated. Tensile tests were carried out at room temperature, 350-420 ℃, and in the supercooled liquid region temperature range, respectively. Obvious plastic deformation was initiated at temperature about 80 °C lower than the glass transition temperature. The ultimate tensile strength decreases with the increase of testing temperature and the ductility increases with temperature. At temperature higher than Tg, viscous flow of Non-Newtonian fluid led to super plastic deformation behavior. The deformation process under tension was inhomogeneous, and remarkable serrations were observed on the stress-strain curve near glass transition temperature.