期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Effect of Hydration Aging and Water Binder Ratio on Microstructure and Mechanical Properties of Sprayed Concrete 被引量:5
1
作者 牛荻涛 王家滨 WANG Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期745-751,共7页
In order to study the durability of sprayed concrete (shotcrete), effects of different hydration aging and water-binder ratio (w/b) on the microstructure of cement paste and basic mechanical properties of test spe... In order to study the durability of sprayed concrete (shotcrete), effects of different hydration aging and water-binder ratio (w/b) on the microstructure of cement paste and basic mechanical properties of test specimens were investigated. The phase composition, mass percentage of ettringite and portland in hydration production and microstructure were characterized by X-ray diffraction (XRD), thermo gravimetry-differential scanning calorimetry (TG-DSC) and scanning electron microscopy (SEM), respectively. The experimental results showed that changes in phase composition was more significant than those of water-binder ratio. With hydration aging and water-binder ratio increased, the mass percentage of ettringite and portland was decreased from 4.42%, 1.49% to 3.31%, 1.35%, respectively and the microstructure of paste was significantly compacted. Likewise, the mechanical properties including cubic compressive strength and splitting tensile strength were rised obviously. 展开更多
关键词 hydration aging water binder ratio (w/b) sprayed concrete(shortcrete) microstructuremechanical properties
下载PDF
Application of steel fibre reinforced sprayed concrete to a deep tunnel in weak rocks 被引量:3
2
作者 周宏伟 彭瑞东 +3 位作者 李振东 董正亮 陈文伟 王健 《Journal of Coal Science & Engineering(China)》 2002年第2期49-54,共6页
Based on an engineering background of a deep tunneling in weak rocks, the numerical modeling is used to compare different support schemes of tunnel at great depth in this paper. Focused on the general behaviors of wea... Based on an engineering background of a deep tunneling in weak rocks, the numerical modeling is used to compare different support schemes of tunnel at great depth in this paper. Focused on the general behaviors of weak rocks at great depth, a tunneling scheme with rock bolting and steel fibre reinforced sprayed concrete is proposed. This scheme is practiced successfully at a deep tunnel in weak rocks in Coal Mine No 10 of Hebi Coal Mining Administration. 展开更多
关键词 steel fibre reinforced sprayed concrete deep tunnel weak rock
下载PDF
Tekcrete Fast~: Fiber-reinforced, rapid-setting sprayed concrete for rib and surface control
3
作者 Stephen C.Tadolini Peter S.Mills David R.Burkhard 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第1期29-34,共6页
Fiber-reinforced spayed concrete has been used for several years in civil and tunneling operations.Research conducted to reduce cure times and increase compressive and flexural strengths resulted in the development of... Fiber-reinforced spayed concrete has been used for several years in civil and tunneling operations.Research conducted to reduce cure times and increase compressive and flexural strengths resulted in the development of Tekcrete Fast~, a cementitious product capable of obtaining 41 MPa compressive strength and 8 MPa flexural strength in only 3 h and reaching 7 d strengths of 62 and 11.7 MPa, respectively.A single bag product that uses conventional shotcrete and gunite application systems makes it a natural crossover product for mining applications.The discovery of incredible adhesion properties and high resistance to chloride permeability helps ensure long-term stability and increases the ease of application.Project results from Disaster City~ in Texas and the application for rehabilitating a coal mine belt entry are presented.The case study illustrates the effectiveness of the product in stabilizing a coal mine beltway and adjacent cross-cuts that were subjected to progressive sloughage due to humidity and cyclical loading. 展开更多
关键词 sprayed concrete Coal mine High strength concrete Polypropylene fiber
下载PDF
Three-dimensional finite difference analysis of shallow sprayed concrete tunnels crossing a reverse fault or a normal fault: A parametric study 被引量:8
4
作者 Masoud RANJBARNIA Milad ZAHERI Daniel DIAS 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第4期998-1011,共14页
Urban tunnels crossing faults are always at the risk of severe damages.In this paper,the efects of a reverse and a normal fault movement on a transversely crossing shallow shotcreted tunnel are investigated by 3D fini... Urban tunnels crossing faults are always at the risk of severe damages.In this paper,the efects of a reverse and a normal fault movement on a transversely crossing shallow shotcreted tunnel are investigated by 3D finite difference analysis.After verifying the accuracy of the numerical simulation predictions with the centrifuge physical model results,a parametric study is then conducted.That is,theleffects of various parameters such as the sprayed concrete thickness,the geo-mechanical properties of soil,the tunnel depth,and the fault plane dip angle are studied on the displacements of the ground surface and the tunnel structure,and on the plastic strains of the soil mass around tunnel.The results of each case of reverse and normal faulting are independently discussed and then compared with each other.It is obtained that deeper tunnels show greater displacements for both types of faulting. 展开更多
关键词 urban tunnel sprayed concrete reverse fault normal fault finite difference analysis
原文传递
Numerical analysis and capacity evaluation of composite sprayed concrete lined tunnels 被引量:3
5
作者 Alan Bloodworth Jiang Su 《Underground Space》 SCIE EI 2018年第2期87-108,共22页
Spray-applied membranes for waterproofing of sprayed concrete tunnels have led to the possibility of shear transfer between primary and secondary linings through the membrane interface,with the potential for reducing o... Spray-applied membranes for waterproofing of sprayed concrete tunnels have led to the possibility of shear transfer between primary and secondary linings through the membrane interface,with the potential for reducing overall lining thickness.Laboratory tests have shown a reasonable degree of composite action in beam specimens.In this study,a numerical model previously calibrated against such tests is applied to a whole tunnel,considering soil–structure interaction and staged lining construction.The model shows composite action,and load sharing between the lining layers is expected in the tunnel as in the beams.Parametric studies over the practical range of interface stiffness values show that composite action is maintained,although at high interface stiffness,excessive bending may be imposed on the secondary lining,requiring additional reinforcement.An effcient composite shell design with minimal additional rein-forcement is achievable if the secondary lining thickness is reduced as compared to current practice.Robustness of the system,measured in terms of the interface’s ability to transfer stress under unequal loading causing distortion on the tunnel,is found to be generally ade-quate.However,adjacent construction in close proximity may provide insuffcient margin on membrane tensile de-bonding,particularly if the membrane is partially or fully saturated. 展开更多
关键词 Composite sprayed concrete lining Spray-applied waterproofing membrane Interface parameters Lining eficiency
原文传递
Interpretation of tangential and radial pressure cells in and on sprayed concrete tunnel linings
6
作者 Benoit D.Jones Chris R.I.Clayton 《Underground Space》 SCIE EI 2021年第5期516-527,共12页
It is important to be able to measure stresses in tunnel linings to verify design assumptions and validate numerical models.For sprayed concrete-lined tunnels,continuous monitoring of stresses from the time of sprayin... It is important to be able to measure stresses in tunnel linings to verify design assumptions and validate numerical models.For sprayed concrete-lined tunnels,continuous monitoring of stresses from the time of spraying onwards is desirable,and this can only be achieved using pressure cells installed on and in the sprayed concrete lining.Although there has been some success in using radial pressure cells between the ground and the lining,a method for obtaining reliable absolute values of stress from tangential pressure cells embedded in the sprayed concrete has not been available.This paper describes numerical and experimental studies of the behavior of pressure cells for monitoring stresses in a sprayed concrete lining and describes an original methodology to achieve reliable results.In particular,data from tangential pressure cells require careful interpretation,as they are sensitive to temperature,and this temperature sensitivity is found in parametric numerical analyses to vary as the stiffness of the concrete and its coefficient of thermal expansion evolve at early age.Tangential pressure cells are also sensitive to shrinkage strains in the concrete,and a methodology for removing this effect is described.Using the approach described in this paper,it is now possible to use pressure cells to measure absolute values of stresses in and on sprayed concrete tunnel linings from early age into the long-term.An example of radial and tangential pressure cells installed in the Heathrow Terminal 4 concourse tunnel is used to illustrate the methodology. 展开更多
关键词 Lining stresses sprayed concrete SHOTCRETE MONITORING Pressure cells
原文传递
Compressive strength prediction of sprayed concrete lining in tunnel engineering using hybrid machine learning techniques
7
作者 Xin Yin Feng Gao +3 位作者 Jian Wu Xing Huang Yucong Pan Quansheng Liu 《Underground Space》 SCIE EI 2022年第5期928-943,共16页
Sprayed concrete lining is a commonly employed support measure in tunnel engineering,which plays an important role in construction safety.Compressive strength is a key performance indicator of sprayed concrete lining,... Sprayed concrete lining is a commonly employed support measure in tunnel engineering,which plays an important role in construction safety.Compressive strength is a key performance indicator of sprayed concrete lining,and the traditional measuring method is time-consuming and laborious.This paper proposes various hybrid machine learning algorithms to accomplish the advanced prediction of compressive strength of sprayed concrete lining based on the mixture design.Two hundred and five sets of experimental data were collected from a water conveyance tunnel in northwestern China for model construction,and each set of data was made up of six basic input variables(i.e.,water,cement,mineral powder,superplasticizer,coarse aggregate,and fine aggregate)and one output variable(i.e.,compressive strength).In order to eliminate the correlation between input variables,a new composite indicator(i.e.,the water-binder ratio)was introduced to achieve dimensionality reduction.After that,four hybrid models in total were built,namely BPNN-QPSO,SVR-QPSO,ELM-QPSO,and RF-QPSO,where the hyper-parameters of BPNN,SVR,ELM,and RF were auto-tuned by QPSO.Engineering application results indicated that RF-QPSO achieved the lowest mean absolute percentage error(MAPE)of 3.47% and root mean square error(RMSE)of 1.30 and the highest determination coefficient(R^(2))of 0.93 in the four hybrid models.Moreover,RFQPSO had the shortest running time of 0.15 s,followed by SVR-QPSO(0.18 s),ELM-QPSO(1.19 s),and BPNN-QPSO(1.58 s).Compared with BPNN-QPSO,SVR-QPSO,and ELM-QPSO,RF-QPSO performed the most superior performance in terms of both prediction accuracy and running speed.Finally,the importance of input variables on the model performance was quantitatively evaluated,further enhancing the interpretability of RF-QPSO. 展开更多
关键词 Intelligent construction Hybrid machine learning sprayed concrete lining Compressive strength prediction Tunnel engineering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部