Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being c...Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds.展开更多
We investigate the interaction between a positive mass and a negative effective mass through a three- mass chain connected with elastic springs, a pair of masses is designed to have an effective negative mass, and it ...We investigate the interaction between a positive mass and a negative effective mass through a three- mass chain connected with elastic springs, a pair of masses is designed to have an effective negative mass, and it interacts with the third positive one as if an equivalent two-mass chain. The dynamics of the equivalent two-mass chain shows that the two bodies may be self-accelerated in same direction when the effective mass becomes negative, the experiment is also conducted to demonstrate this type of motion. We further show that the energy principle (Hamilton's principle) is applicable if the energy of the negative mass unit is properly characterized. The result may be relevant to composite with cells of effective negative mass, their interaction with matrix may lead to more richer unexpected macroscopic responses.展开更多
The structures in engineering can be simplified into elastic beams with concentrated masses and elastic spring supports. Studying the law of vibration of the beams can be a help in guiding its design and avoiding reso...The structures in engineering can be simplified into elastic beams with concentrated masses and elastic spring supports. Studying the law of vibration of the beams can be a help in guiding its design and avoiding resonance. Based on the Laplace transform method, the mode shape functions and the frequency equations of the beams in the typical boundary conditions are derived. A cantilever beam with a lumped mass and a spring is selected to obtain its natural frequencies and mode shape functions. An experiment was conducted in order to get the modal parameters of the beam based on the NExT-ERA method. By comparing the analytical and experimental results, the effects of the locations of the mass and spring on the modal parameter are discussed. The variation of the natural frequencies was obtained with the changing stiffness coefficient and mass coefficient, respectively. The findings provide a reference for the vibration analysis methods and the lumped parameters layout design of elastic beams used in engineering.展开更多
The Northeast United States spring is indicative of major meteorological and biological change though the seasonal boundaries are difficult to define and may even be changing with global climate warming. This research...The Northeast United States spring is indicative of major meteorological and biological change though the seasonal boundaries are difficult to define and may even be changing with global climate warming. This research aims to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. The validity of recent speculations that the onset and termination of spring have changed in recent decades with global change is also examined. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are also isolated and assessed across the period of record to identify important changes in the season’s initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Prior to 1975, more polar air masses are detected while after 1975 more moderate and tropical types are identified. Late spring is characterized by increased variability in all moist air mass frequencies. These findings indicate that, from a synoptic perspective, the season is dry through time but modern springs are also warmer than those of past decades and the initiation of the season is likely arriving earlier. The end of the season represents more variable day-to-day air mass conditions in modern times than detected in past decades.展开更多
The tridiagonal coefficient matrix for the "fixed-fixed" spring-mass system was obtained by changing spring length. And then a new algorithm of the inverse problem was designed to construct the masses and the spring...The tridiagonal coefficient matrix for the "fixed-fixed" spring-mass system was obtained by changing spring length. And then a new algorithm of the inverse problem was designed to construct the masses and the spring constants from the natural frequencies of the "fixed-fixed" and "fixed-fres" spring-mass systems. An example was given to illustrate the results.展开更多
Chaotic oscillations are useful in assessing the health of a structure. Hence, simple chaotic systems which can easily be realized mechanically or electro-mechanically are highly desired. We study a new pieeewise line...Chaotic oscillations are useful in assessing the health of a structure. Hence, simple chaotic systems which can easily be realized mechanically or electro-mechanically are highly desired. We study a new pieeewise linear spring-tnass system. The chaotic behaviour in this system is characterized using bifurcation diagrams and the invariant parameters of the dynamics. We also show that there exists a stochastic analogue of this system, which mimics the dynamical features of its deterministic counterpart. This allows a greater flexibility in practical designs as the chaotic oscillations are obtained either deterministically or stochastically. Also, the oscillations are low dimensional, which reduces the computational resources needed for obtaining the invariant parameters of this system.展开更多
Free vibrations of a beam-mass-spring system with different boundary conditions are analyzed both analyt- ically and numerically. In the analytical analysis, the system is divided into three subsystems and the effects...Free vibrations of a beam-mass-spring system with different boundary conditions are analyzed both analyt- ically and numerically. In the analytical analysis, the system is divided into three subsystems and the effects of the spring and the point mass are considered as internal boundary con- ditions between any two neighboring subsystems. The par- tial differential equations governing the motion of the sub- systems and internal boundary conditions are then solved us- ing the method of separation of variables. In the numerical analysis, the whole system is considered as a single system and the effects of the spring and point mass are introduced using the Dirac delta function. The Galerkin method is then employed to discretize the equation of motion and the result- ing set of ordinary differential equations are solved via eigen- value analysis. Analytical and numerical results are shown to be in very good agreement.展开更多
In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model wa...In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model was solved with MATLAB and was used to explain the high-frequency and low-amplitude temperature oscillation.Temperature variation with the input power from 20 W to 75 W was investigated based on a LHP prototype in a literature.The model agreed well with the experimental data in the literature.The simulation results suggested that the movement of the liquid column was caused by the fluctuation of pressure difference applied on the liquid column and the stiffness coefficients of the vapor springs increasing with the input power.According to parameter analyses,the temperature oscillation at the outlet of the condenser can be weakened by increasing the mass of the liquid column and keeping the temperature at the outlet of the condenser steady.展开更多
Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the st...Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.展开更多
The suspension coil spring is one of the most important components in a vehicle suspension system. Its primary function is to absorb the vibrational shocks that are occasioned by irregular road surface to provide the ...The suspension coil spring is one of the most important components in a vehicle suspension system. Its primary function is to absorb the vibrational shocks that are occasioned by irregular road surface to provide the vehicle with stability and ride comfort. The main objective of this study is to design a suspension coil spring made of structural steel for light duty vehicles with the aim of weight and cost reduction. This study was motivated by the government of Ghana’s actions to industrialise the automotive sector of the country through government policies and programs. The study made use of high carbon steel and low carbon steel as the control materials and structural steel as the implementing material. This was done to determine the suitability of structural steel for vehicle suspension coil spring. The study analysed parameters such as total deformation, equivalent Von Mises stress, maximum shear stress, and safety factor in the static structural analysis. The fatigue analysis also analysed parameters such as fatigue life and fatigue alternating stress. The results of the study revealed that the suspension spring made of structural steel has superior properties against all the parameters set for this study apart from deformation. The two control materials that are known for suspension coil spring design and manufacture have better properties to withstand deformation than the implementing material.展开更多
An innovative variable stiffness device is proposed and investigated based on numerical simulations. The device, called a folding variable stiffness spring (FVSS), can be widely used, especially in tuned mass dampe...An innovative variable stiffness device is proposed and investigated based on numerical simulations. The device, called a folding variable stiffness spring (FVSS), can be widely used, especially in tuned mass dampers (TMDs) with adaptive stiffness. An important characteristic of FVSS is its capability to change the stiffness between lower and upper bounds through a small change of distance between its supports. This special feature results in lower time-lag errors and readjustment in shorter time intervals. The governing equations of the device are derived and simplified for a symmetrical FVSS with similar elements. This device is then used to control a single-degree-of-freedom (SDOF) structure as well as a multi-degree-of-freedom (MDOF) structure via a semi-active TMD. Numerical simulations are conducted to compare several control cases for these structures. To make it more realistic, a real direct current motor with its own limitations is simulated in addition to an ideal control case with no limitations and both the results are compared. It is shown that the proposed device can be effectively used to suppress undesirable vibrations of a structure and considerably improves the performance of the controller compared to a passive device.展开更多
基金supported by the National Research Foundation of Korea Grant founded by the Korean Government(MEST)(Grant No.NRF-2013R1A1A4A01011445)
文摘Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds.
基金supported by the National Natural Science Foundation of China (Grant Nos.11290153 and 11221202)
文摘We investigate the interaction between a positive mass and a negative effective mass through a three- mass chain connected with elastic springs, a pair of masses is designed to have an effective negative mass, and it interacts with the third positive one as if an equivalent two-mass chain. The dynamics of the equivalent two-mass chain shows that the two bodies may be self-accelerated in same direction when the effective mass becomes negative, the experiment is also conducted to demonstrate this type of motion. We further show that the energy principle (Hamilton's principle) is applicable if the energy of the negative mass unit is properly characterized. The result may be relevant to composite with cells of effective negative mass, their interaction with matrix may lead to more richer unexpected macroscopic responses.
基金Supported by the National Natural Science Foundation of China(51109034)
文摘The structures in engineering can be simplified into elastic beams with concentrated masses and elastic spring supports. Studying the law of vibration of the beams can be a help in guiding its design and avoiding resonance. Based on the Laplace transform method, the mode shape functions and the frequency equations of the beams in the typical boundary conditions are derived. A cantilever beam with a lumped mass and a spring is selected to obtain its natural frequencies and mode shape functions. An experiment was conducted in order to get the modal parameters of the beam based on the NExT-ERA method. By comparing the analytical and experimental results, the effects of the locations of the mass and spring on the modal parameter are discussed. The variation of the natural frequencies was obtained with the changing stiffness coefficient and mass coefficient, respectively. The findings provide a reference for the vibration analysis methods and the lumped parameters layout design of elastic beams used in engineering.
文摘The Northeast United States spring is indicative of major meteorological and biological change though the seasonal boundaries are difficult to define and may even be changing with global climate warming. This research aims to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. The validity of recent speculations that the onset and termination of spring have changed in recent decades with global change is also examined. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are also isolated and assessed across the period of record to identify important changes in the season’s initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Prior to 1975, more polar air masses are detected while after 1975 more moderate and tropical types are identified. Late spring is characterized by increased variability in all moist air mass frequencies. These findings indicate that, from a synoptic perspective, the season is dry through time but modern springs are also warmer than those of past decades and the initiation of the season is likely arriving earlier. The end of the season represents more variable day-to-day air mass conditions in modern times than detected in past decades.
基金Project supported by the National Natural Science Foundation of China(Grant No.10271074)
文摘The tridiagonal coefficient matrix for the "fixed-fixed" spring-mass system was obtained by changing spring length. And then a new algorithm of the inverse problem was designed to construct the masses and the spring constants from the natural frequencies of the "fixed-fixed" and "fixed-fres" spring-mass systems. An example was given to illustrate the results.
基金the Council of Scientific and Industrial Research(CSIR),New Delhi for Financial Support through a Senior Research Fellowship(SRF)
文摘Chaotic oscillations are useful in assessing the health of a structure. Hence, simple chaotic systems which can easily be realized mechanically or electro-mechanically are highly desired. We study a new pieeewise linear spring-tnass system. The chaotic behaviour in this system is characterized using bifurcation diagrams and the invariant parameters of the dynamics. We also show that there exists a stochastic analogue of this system, which mimics the dynamical features of its deterministic counterpart. This allows a greater flexibility in practical designs as the chaotic oscillations are obtained either deterministically or stochastically. Also, the oscillations are low dimensional, which reduces the computational resources needed for obtaining the invariant parameters of this system.
文摘Free vibrations of a beam-mass-spring system with different boundary conditions are analyzed both analyt- ically and numerically. In the analytical analysis, the system is divided into three subsystems and the effects of the spring and the point mass are considered as internal boundary con- ditions between any two neighboring subsystems. The par- tial differential equations governing the motion of the sub- systems and internal boundary conditions are then solved us- ing the method of separation of variables. In the numerical analysis, the whole system is considered as a single system and the effects of the spring and point mass are introduced using the Dirac delta function. The Galerkin method is then employed to discretize the equation of motion and the result- ing set of ordinary differential equations are solved via eigen- value analysis. Analytical and numerical results are shown to be in very good agreement.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51276012)
文摘In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model was solved with MATLAB and was used to explain the high-frequency and low-amplitude temperature oscillation.Temperature variation with the input power from 20 W to 75 W was investigated based on a LHP prototype in a literature.The model agreed well with the experimental data in the literature.The simulation results suggested that the movement of the liquid column was caused by the fluctuation of pressure difference applied on the liquid column and the stiffness coefficients of the vapor springs increasing with the input power.According to parameter analyses,the temperature oscillation at the outlet of the condenser can be weakened by increasing the mass of the liquid column and keeping the temperature at the outlet of the condenser steady.
基金Project(20120095110001)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(51134022,51221462)supported by the National Natural Science Foundation of China+1 种基金Project(CXZZ13_0927)supported by Research and Innovation Program for College Graduates of Jiangsu Province,ChinaProject(2013DXS03)supported by the Fundamental Research Funds for Central Universities of China
文摘Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.
文摘The suspension coil spring is one of the most important components in a vehicle suspension system. Its primary function is to absorb the vibrational shocks that are occasioned by irregular road surface to provide the vehicle with stability and ride comfort. The main objective of this study is to design a suspension coil spring made of structural steel for light duty vehicles with the aim of weight and cost reduction. This study was motivated by the government of Ghana’s actions to industrialise the automotive sector of the country through government policies and programs. The study made use of high carbon steel and low carbon steel as the control materials and structural steel as the implementing material. This was done to determine the suitability of structural steel for vehicle suspension coil spring. The study analysed parameters such as total deformation, equivalent Von Mises stress, maximum shear stress, and safety factor in the static structural analysis. The fatigue analysis also analysed parameters such as fatigue life and fatigue alternating stress. The results of the study revealed that the suspension spring made of structural steel has superior properties against all the parameters set for this study apart from deformation. The two control materials that are known for suspension coil spring design and manufacture have better properties to withstand deformation than the implementing material.
文摘An innovative variable stiffness device is proposed and investigated based on numerical simulations. The device, called a folding variable stiffness spring (FVSS), can be widely used, especially in tuned mass dampers (TMDs) with adaptive stiffness. An important characteristic of FVSS is its capability to change the stiffness between lower and upper bounds through a small change of distance between its supports. This special feature results in lower time-lag errors and readjustment in shorter time intervals. The governing equations of the device are derived and simplified for a symmetrical FVSS with similar elements. This device is then used to control a single-degree-of-freedom (SDOF) structure as well as a multi-degree-of-freedom (MDOF) structure via a semi-active TMD. Numerical simulations are conducted to compare several control cases for these structures. To make it more realistic, a real direct current motor with its own limitations is simulated in addition to an ideal control case with no limitations and both the results are compared. It is shown that the proposed device can be effectively used to suppress undesirable vibrations of a structure and considerably improves the performance of the controller compared to a passive device.