Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate...Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization.展开更多
Drought is one of the abiotic stresses limiting the production of soybean(Glycine max).Elucidation of the genetic and molecular basis of the slow-wilting(SW)trait of this crop offers the prospect of its genetic improv...Drought is one of the abiotic stresses limiting the production of soybean(Glycine max).Elucidation of the genetic and molecular basis of the slow-wilting(SW)trait of this crop offers the prospect of its genetic improvement.A panel of 188 accessions and a set of recombinant inbred lines produced from a cross between cultivars Liaodou 14 and Liaodou 21 were used to identify quantitative-trait loci(QTL)associated with SW.Plants were genotyped by Specific-locus amplified fragment sequencing and seedling leaf wilting was assessed under three water-stress treatments.A genome-wide association study identified 26 SW-associated single-nucleotide polymorphisms(SNPs),including three located in a 248-kb linkage-disequilibrium(LD)block on chromosome 2.Linkage mapping revealed a major-effect QTL,qSW2,associated with all three treatments and adjacent to the LD block.Fine mapping in a BC_(2)F_(3) population derived from a backcross between Liaodou 21 and R26 confined qSW2 to a 60-kb interval.Gene expression and sequence variation analysis identified the gene Glyma.02 g218100,encoding an auxin transcription factor,as a candidate gene for qSW2.Our results will contribute significantly to improving drought-resistant soybean cultivars by providing genetic information and resources.展开更多
Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydro...Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods.展开更多
Soybean mosaic virus(SMV),an RNA virus,is the most common and destructive pathogenic virus in soybean fields.The newly developed CRISPR/Cas immune system has provided a novel strategy for improving plant resistance to...Soybean mosaic virus(SMV),an RNA virus,is the most common and destructive pathogenic virus in soybean fields.The newly developed CRISPR/Cas immune system has provided a novel strategy for improving plant resistance to viruses;hence,this study aimed to engineer SMV resistance in soybean using this system.Specifically,multiple sgRNAs were designed to target positive-and/or negative-sense strands of the SMV HC-Pro gene.Subsequently,the corresponding CRISPR/CasRx vectors were constructed and transformed into soybeans.After inoculation with SMV,39.02%,35.77%,and 18.70%of T_(1)plants were confirmed to be highly resistant(HR),resistant(R),and mildly resistant(MR)to SMV,respectively,whereas only 6.50%were identified as susceptible(S).Additionally,qRT-PCR and DAS-ELISA showed that,both at 15 and 30 d post-inoculation(dpi),SMV accumulation significantly decreased or was even undetectable in HR and R plants,followed by MR and S plants.Additionally,the expression level of the CasRx gene varied in almost all T_(1)plants with different resistance level,both at 15 and 30 dpi.Furthermore,when SMV resistance was evaluated in the T_(2)generation,the results were similar to those recorded for the T_(1)generation.These findings provide new insights into the application of the CRISPR/CasRx system for soybean improvement and offer a promising alternative strategy for breeding for resistance to biotic stress that will contribute to the development of SMV-immune soybean germplasm to accelerate progress towards greater soybean crop productivity.展开更多
Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to inve...Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to invest in wheat production. Improving cropping systems for wheat production is paramount. Intercropping cereals with legumes has tremendous advantages. Therefore, this study was designed to optimize wheat production by intercropping it with soybean at different densities. Between March and August 2023, a randomized complete block design trial was conducted in Bambili, North West of Cameroon with treatments T1 (wheat monocrop at 200,000 plants ha<sup>−</sup><sup>1</sup>), T2 (soybean monocrop at 250,000 plants ha<sup>−</sup><sup>1</sup>), T3 (200,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>), T4 (100,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>), T5 (200,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>) and T6 (100,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>). Results revealed that growth parameters of wheat were not significantly influenced by monocrop or intercrop. The yield of wheat was significantly higher in the monocrop than the intercrop treatments, with slight variation amongst the intercrop treatments. Soybean yield was higher in the monocrop than in the intercrop, with no variations amongst the intercrop treatments. Only the land equivalence ratio (LER) for T5 was greater than 1.0. The competitive ratio for T5 was 0.54 for wheat and 1.90 for soybean, comparatively lower than the other monocrop treatments. Intercropping wheat and soybean at 200,000:250,000 ratio is recommended.展开更多
Rhizobia, crucial for nitrogen fixation in leguminous plants, play a vital role in soybean cultivation. This study, conducted in Mexico, a major soybean importer, aimed to identify bacteria from nodules of five soybea...Rhizobia, crucial for nitrogen fixation in leguminous plants, play a vital role in soybean cultivation. This study, conducted in Mexico, a major soybean importer, aimed to identify bacteria from nodules of five soybean varieties in high-production regions. Multilocus sequence analysis (MLSA) was employed for enhanced species resolution. The study identified six Bradyrhizobium species: Bradyrhizobium japonicum USDA 110, Bradyrhizobium japonicum USDA 6, Bradyrhizobium elkanii USDA 76, Bradyrhizobium neotropicale, Bradyrhizobium lablabi, and Bradyrhizobium icense. Bradyrhizobium japonicum USDA 110 predominated in the soils, displaying symbiotic preference for the Huasteca 400 variety. However, phylogenetic analysis didn't reveal a clear association between strains, soil, and soybean variety. This research sheds light on the diversity of rhizobia in Mexican soybean cultivation, contributing to the understanding of symbiotic relationships in soybean production systems.展开更多
Soybean is one of the most important sources of vegetable oil.The oil content and fatty acid ratio have attracted significant attention due to their impacts on the shelf-life of soybean oil products and consumer healt...Soybean is one of the most important sources of vegetable oil.The oil content and fatty acid ratio have attracted significant attention due to their impacts on the shelf-life of soybean oil products and consumer health.In this study,a high-density genetic map derived from Guizao 1 and Brazil 13 was used to analyze the quantitative trait loci of palmitic acid(PA),stearic acid(SA),oleic acid(OA),linoleic acid(LA),linolenic acid(LNA),and oil content(OC).A total of 54 stable QTLs were detected in the genetic map linkage analysis,which shared six bin intervals.Among them,the bin interval on chromosome 13(bin106-bin118 and bin123-bin125)was found to include stable QTLs in multiple environments that were linked to OA,LA,and LNA.Eight differentially expressed genes(DEGs)within these QTL intervals were determined as candidate genes according to the combination of parental resequencing,bioinformatics and RNA sequencing data.All these results are conducive to breeding soybean with the ideal fatty acid ratio for food,and provide the genetic basis for mining genes related to the fatty acid and oil content traits in soybean.展开更多
Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the ma...Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding.展开更多
基金supported by the Sci-Tech Innovation 2030(2022ZD0400701-2)Agricultural Science and Technology Innovation Program of CAAS+1 种基金the National Natural Science Foundation of China(31871705)the Central Public-Interest Scientific Institution Basal Research Fund。
文摘Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization.
基金The study was supported by the National Natural Science Foundation of China(32101795,32301782)National Key Research and Development Program of China(2016YFD0100201-01)+2 种基金Liaoning Provincial Major Special Project of Agricultural Science and Technology(2022JH1/10200002,2021JH1/10400038)Key Research and Development Plan of Liaoning Science and Technology Department(2021JH2/1020027)Shenyang Seed Industry Innovation Project(22-318-2-12).
文摘Drought is one of the abiotic stresses limiting the production of soybean(Glycine max).Elucidation of the genetic and molecular basis of the slow-wilting(SW)trait of this crop offers the prospect of its genetic improvement.A panel of 188 accessions and a set of recombinant inbred lines produced from a cross between cultivars Liaodou 14 and Liaodou 21 were used to identify quantitative-trait loci(QTL)associated with SW.Plants were genotyped by Specific-locus amplified fragment sequencing and seedling leaf wilting was assessed under three water-stress treatments.A genome-wide association study identified 26 SW-associated single-nucleotide polymorphisms(SNPs),including three located in a 248-kb linkage-disequilibrium(LD)block on chromosome 2.Linkage mapping revealed a major-effect QTL,qSW2,associated with all three treatments and adjacent to the LD block.Fine mapping in a BC_(2)F_(3) population derived from a backcross between Liaodou 21 and R26 confined qSW2 to a 60-kb interval.Gene expression and sequence variation analysis identified the gene Glyma.02 g218100,encoding an auxin transcription factor,as a candidate gene for qSW2.Our results will contribute significantly to improving drought-resistant soybean cultivars by providing genetic information and resources.
基金supported by the Doctoral Research Foundation of Bohai University (05013/0520bs006)the Science and Technology Project of“Unveiling and Commanding”Liaoning Province (2021JH1/10400033)the Scientific Research Project from Education Department of Liaoning Province (LJ2020010)。
文摘Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods.
基金supported by grants from National Natural Science Foundation of China(32001571)R&D Program of Beijing Municipal Education Commission(KM202212448003,KM202312448004)+4 种基金Science and Technology Innovation Project of Beijing Vocational College of Agriculture(XY-YF-22-02)Zhongshan Biological Breeding Laboratory(ZSBBL-KY2023-03)China Agriculture Research System of MOF and MARA(CARS-04)Jiangsu Collaborative Innovation Center for Modern Crop Production(JCICMCP)Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry(CIC-MCP).
文摘Soybean mosaic virus(SMV),an RNA virus,is the most common and destructive pathogenic virus in soybean fields.The newly developed CRISPR/Cas immune system has provided a novel strategy for improving plant resistance to viruses;hence,this study aimed to engineer SMV resistance in soybean using this system.Specifically,multiple sgRNAs were designed to target positive-and/or negative-sense strands of the SMV HC-Pro gene.Subsequently,the corresponding CRISPR/CasRx vectors were constructed and transformed into soybeans.After inoculation with SMV,39.02%,35.77%,and 18.70%of T_(1)plants were confirmed to be highly resistant(HR),resistant(R),and mildly resistant(MR)to SMV,respectively,whereas only 6.50%were identified as susceptible(S).Additionally,qRT-PCR and DAS-ELISA showed that,both at 15 and 30 d post-inoculation(dpi),SMV accumulation significantly decreased or was even undetectable in HR and R plants,followed by MR and S plants.Additionally,the expression level of the CasRx gene varied in almost all T_(1)plants with different resistance level,both at 15 and 30 dpi.Furthermore,when SMV resistance was evaluated in the T_(2)generation,the results were similar to those recorded for the T_(1)generation.These findings provide new insights into the application of the CRISPR/CasRx system for soybean improvement and offer a promising alternative strategy for breeding for resistance to biotic stress that will contribute to the development of SMV-immune soybean germplasm to accelerate progress towards greater soybean crop productivity.
文摘Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to invest in wheat production. Improving cropping systems for wheat production is paramount. Intercropping cereals with legumes has tremendous advantages. Therefore, this study was designed to optimize wheat production by intercropping it with soybean at different densities. Between March and August 2023, a randomized complete block design trial was conducted in Bambili, North West of Cameroon with treatments T1 (wheat monocrop at 200,000 plants ha<sup>−</sup><sup>1</sup>), T2 (soybean monocrop at 250,000 plants ha<sup>−</sup><sup>1</sup>), T3 (200,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>), T4 (100,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>), T5 (200,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>) and T6 (100,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>). Results revealed that growth parameters of wheat were not significantly influenced by monocrop or intercrop. The yield of wheat was significantly higher in the monocrop than the intercrop treatments, with slight variation amongst the intercrop treatments. Soybean yield was higher in the monocrop than in the intercrop, with no variations amongst the intercrop treatments. Only the land equivalence ratio (LER) for T5 was greater than 1.0. The competitive ratio for T5 was 0.54 for wheat and 1.90 for soybean, comparatively lower than the other monocrop treatments. Intercropping wheat and soybean at 200,000:250,000 ratio is recommended.
文摘Rhizobia, crucial for nitrogen fixation in leguminous plants, play a vital role in soybean cultivation. This study, conducted in Mexico, a major soybean importer, aimed to identify bacteria from nodules of five soybean varieties in high-production regions. Multilocus sequence analysis (MLSA) was employed for enhanced species resolution. The study identified six Bradyrhizobium species: Bradyrhizobium japonicum USDA 110, Bradyrhizobium japonicum USDA 6, Bradyrhizobium elkanii USDA 76, Bradyrhizobium neotropicale, Bradyrhizobium lablabi, and Bradyrhizobium icense. Bradyrhizobium japonicum USDA 110 predominated in the soils, displaying symbiotic preference for the Huasteca 400 variety. However, phylogenetic analysis didn't reveal a clear association between strains, soil, and soybean variety. This research sheds light on the diversity of rhizobia in Mexican soybean cultivation, contributing to the understanding of symbiotic relationships in soybean production systems.
基金supported by funding from the Seed Industry Revitalization Plan of Guangdong Province,China(2022-NPY-00-007)the Hainan Seed Industry Laboratory,China(B21HJ0901 and B23C1000416)+5 种基金the Key-Area Research and Development Program of Guangdong Province,China(2020B020220008)the National Natural Science Foundation of China(31971966and 31971965)the China Agricultural Research System(CARS-04-PS09)the National Key Research and Development Projects,China(2018YFE0116900-06)Guangdong Agricultural Science and Technology Innovation and Promotion Project,China(2019KJ136-03)the Sanya Science and Technology Innovation Special Project,China(2022KJCX11)。
文摘Soybean is one of the most important sources of vegetable oil.The oil content and fatty acid ratio have attracted significant attention due to their impacts on the shelf-life of soybean oil products and consumer health.In this study,a high-density genetic map derived from Guizao 1 and Brazil 13 was used to analyze the quantitative trait loci of palmitic acid(PA),stearic acid(SA),oleic acid(OA),linoleic acid(LA),linolenic acid(LNA),and oil content(OC).A total of 54 stable QTLs were detected in the genetic map linkage analysis,which shared six bin intervals.Among them,the bin interval on chromosome 13(bin106-bin118 and bin123-bin125)was found to include stable QTLs in multiple environments that were linked to OA,LA,and LNA.Eight differentially expressed genes(DEGs)within these QTL intervals were determined as candidate genes according to the combination of parental resequencing,bioinformatics and RNA sequencing data.All these results are conducive to breeding soybean with the ideal fatty acid ratio for food,and provide the genetic basis for mining genes related to the fatty acid and oil content traits in soybean.
基金supported by the National Key Research and Development Program of China(2023YFD1200600 to Xiaoya Lin)National Natural Science Foundation of China(32090060 to Fanjiang Kong,32001568 to Xiaoya Lin,31930083 to Baohui Liu,and 31901500 to Tiantian Bu)China Postdoctoral Science Foundation(2019 M652839 to Liyu Chen)。
文摘Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding.