The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and ...The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and under the stress of 140-210 MPa for 16 h.Based on these experimental data,material constitutive equations which can well characterize creep aging behaviors of the tested alloy were developed.The effect of interior stress distributed along the sheet thickness on springback was simulated using FE software MSC.MARC by compiling the established constitutive models into the user subroutine.The simulation results showed that the amount of sheet springback was 61.12% when merely considering tensile stress existing along the sheet thickness;while sheet springback was up to 65.93% when taking both tensile and compressive stresses into account.In addition,an AA2524 rectangular sheet was subjected to CAF experiment in resistance furnace.The springback value of the formed rectangular sheet was 68.2%,which was much closer to 65.93%.This confirms that both tensile and compressive stresses across the sheet thickness should be considered in accurately predicting springback of the sheet after forming,which can be more consistent with experimental results.展开更多
Sheet metal forming is one of the most preferred manufacturing processes in automotive and aerospace industries. However, due to increase in fuel prices and more stringent environmental regulation, these industries ar...Sheet metal forming is one of the most preferred manufacturing processes in automotive and aerospace industries. However, due to increase in fuel prices and more stringent environmental regulation, these industries are facing many challenges to meet the criteria. Due to this, many efforts in design and manufacturing were considered and presented.Those efforts were implementing lighter-weight materials like aluminum and magnesium(but they have higher elasticity as compared to steel) and implementing higher-strength steel with lower thickness. The main challenge found in both cases is springback after deformation. Springback is the elastic recovery after the part is unloaded. In this paper, the 3D channels with large length were deformed numerically and springback at different section was predicted. For this purpose, tailorwelded blank was considered. The geometric change along the long axis was also discussed. In addition, the effect of flange springback on wall springback was also analyzed. It was found that different section produced different springback and greater influence of flange springback. To validate the numerical simulation approach, the experiments on one case were performed and compared.展开更多
基金Project(2014CB046602)supported by the National Basic Research Program of ChinaProject(20120162110003)supported by Ph D Programs Foundation of Ministry of Education of China
文摘The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and under the stress of 140-210 MPa for 16 h.Based on these experimental data,material constitutive equations which can well characterize creep aging behaviors of the tested alloy were developed.The effect of interior stress distributed along the sheet thickness on springback was simulated using FE software MSC.MARC by compiling the established constitutive models into the user subroutine.The simulation results showed that the amount of sheet springback was 61.12% when merely considering tensile stress existing along the sheet thickness;while sheet springback was up to 65.93% when taking both tensile and compressive stresses into account.In addition,an AA2524 rectangular sheet was subjected to CAF experiment in resistance furnace.The springback value of the formed rectangular sheet was 68.2%,which was much closer to 65.93%.This confirms that both tensile and compressive stresses across the sheet thickness should be considered in accurately predicting springback of the sheet after forming,which can be more consistent with experimental results.
文摘Sheet metal forming is one of the most preferred manufacturing processes in automotive and aerospace industries. However, due to increase in fuel prices and more stringent environmental regulation, these industries are facing many challenges to meet the criteria. Due to this, many efforts in design and manufacturing were considered and presented.Those efforts were implementing lighter-weight materials like aluminum and magnesium(but they have higher elasticity as compared to steel) and implementing higher-strength steel with lower thickness. The main challenge found in both cases is springback after deformation. Springback is the elastic recovery after the part is unloaded. In this paper, the 3D channels with large length were deformed numerically and springback at different section was predicted. For this purpose, tailorwelded blank was considered. The geometric change along the long axis was also discussed. In addition, the effect of flange springback on wall springback was also analyzed. It was found that different section produced different springback and greater influence of flange springback. To validate the numerical simulation approach, the experiments on one case were performed and compared.