Carbon nitride CN. thin films have been deposited on polycrystalline β-Si3N4 substrates by un-balanced magnetron sputtering in a nitrogen discharge. Both the film deposition rate and the nitrogen concentration decrea...Carbon nitride CN. thin films have been deposited on polycrystalline β-Si3N4 substrates by un-balanced magnetron sputtering in a nitrogen discharge. Both the film deposition rate and the nitrogen concentration decrease with substrate temperature increase in the range of 100~400℃The maximum of nitrogen content is 40 at. pct. Raman spectroscopy and atomic force mi-croscopy were used to characterize the bonding, microstructure and surface roughness of the films. Nanoindentation experiments exhibit a higher hardness of 70 GPa and an extremely elas-tic recovery of 85% at higher substrate temperature.展开更多
Tin oxide (SnO2) is one of the most promising transparent conducting oxide materials, which is widely used in thin film gas sensors. We investigate the dependence of the deposition time on structural, morphologicaJ ...Tin oxide (SnO2) is one of the most promising transparent conducting oxide materials, which is widely used in thin film gas sensors. We investigate the dependence of the deposition time on structural, morphologicaJ and hydrogen gas sensing properties of SnO2 thin films synthesized by dc magnetron sputtering. The deposited samples are characterized by XRD, SEM, AFM, surface area measurements and surface profiler. Also the H2 gas sensing properties of SnO2 deposited samples are performed against a wide range of operating temperature. The XRD analysis demonstrates that the degree of crystallinity of the deposited SnO2 films strongly depends on the deposition time. SEM and AFM analyses reveal that the size of nanoparticles or agglomerates, and both average and rms surface roughness is enhanced with the increasing deposition time. Also gas sensors based on these SnO2 nanolayers show an acceptable response to hydrogen at various operating temperatures.展开更多
Growth and structural properties of thin a-C films prepared by the 60 MHz very-high-frequency(VHF) magnetron sputtering were investigated. The energy and flux of ions impinging the substrate were also analyzed. It i...Growth and structural properties of thin a-C films prepared by the 60 MHz very-high-frequency(VHF) magnetron sputtering were investigated. The energy and flux of ions impinging the substrate were also analyzed. It is found that the thin a-C films prepared by the 60 MHz sputtering have a lower growth rate, a smooth surface, and more sp3 contents.These features are related to the higher ion energy and the lower ions flux onto the substrate. Therefore, the 60 MHz VHF sputtering is more suitable for the preparation of thin a-C film with more sp3 contents.展开更多
Properties of ferroelectric xBiInO3-(1-x)PbTiO3(xBI-(1-x)PT) thin films deposited on(101) SrRuO3/(200)Pt/(200) MgO substrates by rf magnetron sputtering method and effects of deposition conditions are inve...Properties of ferroelectric xBiInO3-(1-x)PbTiO3(xBI-(1-x)PT) thin films deposited on(101) SrRuO3/(200)Pt/(200) MgO substrates by rf magnetron sputtering method and effects of deposition conditions are investigated.The structures of the xBI-(1-x)PT films are characterized by x-ray diffraction and scanning electron microscopy.The results indicate that the thin films are grown with mainly(001) orientation. The chemical compositions of the films are analyzed by scanning electron probe and the results indicate that the loss phenomena of Pb and Bi elements depend on the pressure and temperature during the sputtering process.The sputtering parameters including target composition, substrate temperature, and gas pressure are adjusted to obtain optimum sputtering conditions. To decrease leakage currents,2 mol% La2 O3 is doped in the targets. The P-E hysteresis loops show that the optimized xBI-(1-x)PT(x = 0.24) film has high ferroelectricities with remnant polarization2 Pr = 80μC/cm2 and coercive electric field 2 EC = 300 kV/cm. The Curie temperature is about 640℃. The results show that the films have optimum performance and will have wide applications.展开更多
Zinc sulphide(ZnS) thin films have grown on glass and Si substrates by reactive cathodic radio frequency(RF) sputtering. The RF power was varied in the range of 100 to 250 W, while the deposition time is set at75 min....Zinc sulphide(ZnS) thin films have grown on glass and Si substrates by reactive cathodic radio frequency(RF) sputtering. The RF power was varied in the range of 100 to 250 W, while the deposition time is set at75 min. The optical, structural, and morphological properties of these thin films have been studied. The optical properties(mainly thickness, refractive index,absorption coefficient, and optical band gap) were investigated by optical transmittance measurements in the wavelength range of ultraviolet-visible-near infrared spectroscopy and spectroscopy infrared with Fourier transform. Fourier(FT-IR) and XRD analysis indicated that all sputtering ZnS films had a single-phase with a preferred orientation along the(111) plane of the zinc sphalerite phase(ZB). The crystallite size ranged from 11.5 to 48.5 nm with RF power getting a maximum of 200 W. UV-visible measurements exhibited that the ZnS film had more than 80% transmission in the visible wavelength region. In addition, it has been observed that the band gap energy of ZnS films is decreased slightly from 3.52 to 3.29 eV, and as the RF power is increased, the film thickness increases with the speed of deposit growth. Scanning electron microscopy observations revealed the types of smooth-surfaced films. The measurements(FT-IR) revealed at wave number1118 and 465.02 cmabsorption bands corresponding to the symmetrical and asymmetric vibration of the Zn-S stretching mode. X-ray reflectometry measurements of ZnS films have shown that the density of the films is(3.9 g/cm~3) close to that of solid ZnS.展开更多
The CuZnSn(CZT) precursor thin films are grown by ion-beam sputtering Cu, Zn, Sn targets with different orders and then sputtering Se target to fabricate Cu_2ZnSnSe_4(CZTSe) absorber thin films on molybdenum subst...The CuZnSn(CZT) precursor thin films are grown by ion-beam sputtering Cu, Zn, Sn targets with different orders and then sputtering Se target to fabricate Cu_2ZnSnSe_4(CZTSe) absorber thin films on molybdenum substrates. They are annealed in the same vacuum chamber at 400 ℃. The characterization methods of CZTSe thin films include X-ray diffraction(XRD), energy dispersive spectroscopy(EDS), scanning electron microscopy(SEM), and X-ray photoelectron spectra(XPS) in order to study the crystallographic properties, composition, surface morphology, electrical properties and so on. The results display that the CZTSe thin films got the strongest diffraction peak intensity and were with good crystalline quality and its morphology appeared smooth and compact with a sequence of Cu/Zn/Sn/Se, which reveals that the expected states for CZTSe are Cu^(1+), Zn^(2+), Sn^(4+), Se^(2).With the good crystalline quality and close to ideal stoichiometric ratio the resistivity of the CZTSe film with the sequence of Cu/Zn/Sn/Se is lower, whose optical band gap is about 1.50 eV.展开更多
Bismuth ferrite(Bi_2Fe_4O_9) thin films were grown on p-type Si(100) substrate by radio-frequency magnetron sputtering at 873 K. X-ray diffraction, field emission scanning electron microscopy and Raman spectroscop...Bismuth ferrite(Bi_2Fe_4O_9) thin films were grown on p-type Si(100) substrate by radio-frequency magnetron sputtering at 873 K. X-ray diffraction, field emission scanning electron microscopy and Raman spectroscopy studies revealed that the grown films have single-phase polycrystalline nature and are crystallized in orthorhombic structure. The grain size of the grown thin films was found to increase(56–130 nm) with sputtering power. Atomic force microscopy images clearly illustrated that the grown thin films have smooth surface. Energy-dispersive X-ray analysis revealed the presence of Bi, Fe and O elements with desired ratio and also the absence of impurities in the grown films. Analysis of ferroelectric hysteresis loops revealed that the remanent polarization and coercive field increase with the increase in sputtering power. Vicker's hardness analysis showed that the hardness of films strongly depends on the grain size and film thickness, which are mainly determined by the sputtering power. The above observations revealed that Bi_2Fe_4O_9 thin film deposited at higher sputtering power has good crystallinity and shows better electrical properties.展开更多
文摘Carbon nitride CN. thin films have been deposited on polycrystalline β-Si3N4 substrates by un-balanced magnetron sputtering in a nitrogen discharge. Both the film deposition rate and the nitrogen concentration decrease with substrate temperature increase in the range of 100~400℃The maximum of nitrogen content is 40 at. pct. Raman spectroscopy and atomic force mi-croscopy were used to characterize the bonding, microstructure and surface roughness of the films. Nanoindentation experiments exhibit a higher hardness of 70 GPa and an extremely elas-tic recovery of 85% at higher substrate temperature.
基金Supported by the Bandar Abbas Branch of the Islamic Azad University
文摘Tin oxide (SnO2) is one of the most promising transparent conducting oxide materials, which is widely used in thin film gas sensors. We investigate the dependence of the deposition time on structural, morphologicaJ and hydrogen gas sensing properties of SnO2 thin films synthesized by dc magnetron sputtering. The deposited samples are characterized by XRD, SEM, AFM, surface area measurements and surface profiler. Also the H2 gas sensing properties of SnO2 deposited samples are performed against a wide range of operating temperature. The XRD analysis demonstrates that the degree of crystallinity of the deposited SnO2 films strongly depends on the deposition time. SEM and AFM analyses reveal that the size of nanoparticles or agglomerates, and both average and rms surface roughness is enhanced with the increasing deposition time. Also gas sensors based on these SnO2 nanolayers show an acceptable response to hydrogen at various operating temperatures.
基金Project supported by the National Natural Science Foundation of China(Grant No.11275136)
文摘Growth and structural properties of thin a-C films prepared by the 60 MHz very-high-frequency(VHF) magnetron sputtering were investigated. The energy and flux of ions impinging the substrate were also analyzed. It is found that the thin a-C films prepared by the 60 MHz sputtering have a lower growth rate, a smooth surface, and more sp3 contents.These features are related to the higher ion energy and the lower ions flux onto the substrate. Therefore, the 60 MHz VHF sputtering is more suitable for the preparation of thin a-C film with more sp3 contents.
基金Supported by the National Natural Science Foundation of China under Grant No 11304160the Special Fund for Public Interest of China under Grant No 201510068,and the NUPTFC under Grant No NY215111
文摘Properties of ferroelectric xBiInO3-(1-x)PbTiO3(xBI-(1-x)PT) thin films deposited on(101) SrRuO3/(200)Pt/(200) MgO substrates by rf magnetron sputtering method and effects of deposition conditions are investigated.The structures of the xBI-(1-x)PT films are characterized by x-ray diffraction and scanning electron microscopy.The results indicate that the thin films are grown with mainly(001) orientation. The chemical compositions of the films are analyzed by scanning electron probe and the results indicate that the loss phenomena of Pb and Bi elements depend on the pressure and temperature during the sputtering process.The sputtering parameters including target composition, substrate temperature, and gas pressure are adjusted to obtain optimum sputtering conditions. To decrease leakage currents,2 mol% La2 O3 is doped in the targets. The P-E hysteresis loops show that the optimized xBI-(1-x)PT(x = 0.24) film has high ferroelectricities with remnant polarization2 Pr = 80μC/cm2 and coercive electric field 2 EC = 300 kV/cm. The Curie temperature is about 640℃. The results show that the films have optimum performance and will have wide applications.
文摘Zinc sulphide(ZnS) thin films have grown on glass and Si substrates by reactive cathodic radio frequency(RF) sputtering. The RF power was varied in the range of 100 to 250 W, while the deposition time is set at75 min. The optical, structural, and morphological properties of these thin films have been studied. The optical properties(mainly thickness, refractive index,absorption coefficient, and optical band gap) were investigated by optical transmittance measurements in the wavelength range of ultraviolet-visible-near infrared spectroscopy and spectroscopy infrared with Fourier transform. Fourier(FT-IR) and XRD analysis indicated that all sputtering ZnS films had a single-phase with a preferred orientation along the(111) plane of the zinc sphalerite phase(ZB). The crystallite size ranged from 11.5 to 48.5 nm with RF power getting a maximum of 200 W. UV-visible measurements exhibited that the ZnS film had more than 80% transmission in the visible wavelength region. In addition, it has been observed that the band gap energy of ZnS films is decreased slightly from 3.52 to 3.29 eV, and as the RF power is increased, the film thickness increases with the speed of deposit growth. Scanning electron microscopy observations revealed the types of smooth-surfaced films. The measurements(FT-IR) revealed at wave number1118 and 465.02 cmabsorption bands corresponding to the symmetrical and asymmetric vibration of the Zn-S stretching mode. X-ray reflectometry measurements of ZnS films have shown that the density of the films is(3.9 g/cm~3) close to that of solid ZnS.
基金Project supported by the National Natural Science Foundation of China(No.61404086)the Basical Research Program of Shenzhen(Nos.JCYJ20150324140036866,JCYJ20150324141711581)the Natural Science Foundation of SZU(No.2014017)
文摘The CuZnSn(CZT) precursor thin films are grown by ion-beam sputtering Cu, Zn, Sn targets with different orders and then sputtering Se target to fabricate Cu_2ZnSnSe_4(CZTSe) absorber thin films on molybdenum substrates. They are annealed in the same vacuum chamber at 400 ℃. The characterization methods of CZTSe thin films include X-ray diffraction(XRD), energy dispersive spectroscopy(EDS), scanning electron microscopy(SEM), and X-ray photoelectron spectra(XPS) in order to study the crystallographic properties, composition, surface morphology, electrical properties and so on. The results display that the CZTSe thin films got the strongest diffraction peak intensity and were with good crystalline quality and its morphology appeared smooth and compact with a sequence of Cu/Zn/Sn/Se, which reveals that the expected states for CZTSe are Cu^(1+), Zn^(2+), Sn^(4+), Se^(2).With the good crystalline quality and close to ideal stoichiometric ratio the resistivity of the CZTSe film with the sequence of Cu/Zn/Sn/Se is lower, whose optical band gap is about 1.50 eV.
文摘Bismuth ferrite(Bi_2Fe_4O_9) thin films were grown on p-type Si(100) substrate by radio-frequency magnetron sputtering at 873 K. X-ray diffraction, field emission scanning electron microscopy and Raman spectroscopy studies revealed that the grown films have single-phase polycrystalline nature and are crystallized in orthorhombic structure. The grain size of the grown thin films was found to increase(56–130 nm) with sputtering power. Atomic force microscopy images clearly illustrated that the grown thin films have smooth surface. Energy-dispersive X-ray analysis revealed the presence of Bi, Fe and O elements with desired ratio and also the absence of impurities in the grown films. Analysis of ferroelectric hysteresis loops revealed that the remanent polarization and coercive field increase with the increase in sputtering power. Vicker's hardness analysis showed that the hardness of films strongly depends on the grain size and film thickness, which are mainly determined by the sputtering power. The above observations revealed that Bi_2Fe_4O_9 thin film deposited at higher sputtering power has good crystallinity and shows better electrical properties.