This paper presents the fabrication of squama-shape micro/nano multi-scale structures and the analysis of the interaction among different-scale structures during the fabrication processes. Well-designed microstructure...This paper presents the fabrication of squama-shape micro/nano multi-scale structures and the analysis of the interaction among different-scale structures during the fabrication processes. Well-designed microstructures made of inverted pyramids and V-shape grooves are fabricated by KOH wet etching. High-dense high-aspect-ratio (HAR) nanostructures are fabricated atop microstructures by an improved maskless deep reactive ion etching (DRIE) process, with an optimized recipe to form micro/nano dual-scale structures (MNDS). Due to the impact of the profile of microstructures on the shape of nanostructures, dissymmetrical (i.e., squama-shape) nanopillars have been formed on the inclined surfaces of microstructures, while the symmetrical nanopillars are formed on the horizontal surfaces with different formation velocities. Furthermore, the optical properties of MNDS are not sensitive to structural parameters of microstructures, making the sample overcome the lithography limitation of conventional processes for photo-devices. Eventually, three-level structures are fabricated by sputtering a gold thin film on the MNDS, and the profile of MNDS is selective in the deposition of gold particles, which is very useful for practical applications.展开更多
基金supported by the National Natural Science Foundation of China (Grand Nos. 91023045, 61176103)the Key Laboratory Fund(Grant No. 9140C790103110C7903)
文摘This paper presents the fabrication of squama-shape micro/nano multi-scale structures and the analysis of the interaction among different-scale structures during the fabrication processes. Well-designed microstructures made of inverted pyramids and V-shape grooves are fabricated by KOH wet etching. High-dense high-aspect-ratio (HAR) nanostructures are fabricated atop microstructures by an improved maskless deep reactive ion etching (DRIE) process, with an optimized recipe to form micro/nano dual-scale structures (MNDS). Due to the impact of the profile of microstructures on the shape of nanostructures, dissymmetrical (i.e., squama-shape) nanopillars have been formed on the inclined surfaces of microstructures, while the symmetrical nanopillars are formed on the horizontal surfaces with different formation velocities. Furthermore, the optical properties of MNDS are not sensitive to structural parameters of microstructures, making the sample overcome the lithography limitation of conventional processes for photo-devices. Eventually, three-level structures are fabricated by sputtering a gold thin film on the MNDS, and the profile of MNDS is selective in the deposition of gold particles, which is very useful for practical applications.