Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and us...Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and used to investigate the seismic behavior of the connection.The results of the finite element model are validated by a set of cyclic loading tests.The cyclic loading tests and the finite element analyses indicate that the failure mode of the suggested connections is plastic hinge at the beam with inelastic rotation angle exceeding 0.04 rad.The suggested connections have sufficient strength,plastic deformation and energy dissipation capacity to be used in composite moment frames as beam-to-column rigid connections.展开更多
Nonlinear finite element analysis and parametric studies were carried out to study the influence of axial load ratio on the shear behavior of the through-diaphragm connections of concrete-filled square steel tubular c...Nonlinear finite element analysis and parametric studies were carried out to study the influence of axial load ratio on the shear behavior of the through-diaphragm connections of concrete-filled square steel tubular columns. The analysis reveals that smaller axial load ratio can improve the shear bearing capacity and ductility while larger axial load ratio will decrease the shear behavior of the through-diaphragm connections. The parametric studies indicate that the axial load ratio should be limited to less than 0.4 and its influence should be considered in the analysis and design of such connections.展开更多
An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic later...An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance.展开更多
The application of artificial neural network to predict the ultimate bearing capacity of CFST ( concrete-filled square steel tubes) short columns under axial loading is explored. Input parameters consiste of concret...The application of artificial neural network to predict the ultimate bearing capacity of CFST ( concrete-filled square steel tubes) short columns under axial loading is explored. Input parameters consiste of concrete compressive strength, yield strength of steel tube, confinement index, sectional dimension and width-to-thickness ratio. The ultimate bearing capacity is the only output parameter. A multilayer feedforward neural network is used to describe the nonlinear relationships between the input and output variables. Fifty-five experimental data of CFST short columns under axial loading are used to train and test the neural network. A comparison between the neural network model and three parameter models shows that the neural network model possesses good accuracy and could be a practical method for predicting the ultimate strength of axially loaded CFST short columns.展开更多
基金Supported by National Natural Science Foundation of China(No.51268054)Natural Science Foundation of Tianjin(No.13JCQNJC07300)the foundation of Key Laboratory of Coast Civil Structure Safety(Tianjin University),Ministry of Education of China(No.2011-1)
文摘Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and used to investigate the seismic behavior of the connection.The results of the finite element model are validated by a set of cyclic loading tests.The cyclic loading tests and the finite element analyses indicate that the failure mode of the suggested connections is plastic hinge at the beam with inelastic rotation angle exceeding 0.04 rad.The suggested connections have sufficient strength,plastic deformation and energy dissipation capacity to be used in composite moment frames as beam-to-column rigid connections.
基金Supported by the National Natural Science Foundation of China(No.51268054 and No.51468061)the Natural Science Foundation of Tianjin(No.13JCQNJC07300)Foundation of Xinjiang University(No.XY110137)
文摘Nonlinear finite element analysis and parametric studies were carried out to study the influence of axial load ratio on the shear behavior of the through-diaphragm connections of concrete-filled square steel tubular columns. The analysis reveals that smaller axial load ratio can improve the shear bearing capacity and ductility while larger axial load ratio will decrease the shear behavior of the through-diaphragm connections. The parametric studies indicate that the axial load ratio should be limited to less than 0.4 and its influence should be considered in the analysis and design of such connections.
基金the National Natural Science Foundation of China under Grant Nos.51268004 and 51578163the Guangxi Science and Technology Key Project under Grant No.12118023-3
文摘An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance.
文摘The application of artificial neural network to predict the ultimate bearing capacity of CFST ( concrete-filled square steel tubes) short columns under axial loading is explored. Input parameters consiste of concrete compressive strength, yield strength of steel tube, confinement index, sectional dimension and width-to-thickness ratio. The ultimate bearing capacity is the only output parameter. A multilayer feedforward neural network is used to describe the nonlinear relationships between the input and output variables. Fifty-five experimental data of CFST short columns under axial loading are used to train and test the neural network. A comparison between the neural network model and three parameter models shows that the neural network model possesses good accuracy and could be a practical method for predicting the ultimate strength of axially loaded CFST short columns.