Some experiments were made for the buoyant jet from a square orifice with a square disc placed on it in static ambient and concentration along the axis in self-similar area behind disc was measured. And at the same ti...Some experiments were made for the buoyant jet from a square orifice with a square disc placed on it in static ambient and concentration along the axis in self-similar area behind disc was measured. And at the same time a three-dimensional mathematical model was established to simulate the whole flowing under different conditions. All the results predicted by the numerical calculation were substantiated by the experiments. The results were compared with experiential formula for obstructed round buoyant ver- tical jets in static ambient and it was found that the two concentration distributions had good accordance. Star shape of temperature isolines on cross-sections in the near areas from the disc was found and it was a very special figure for obstructed square buoyant vertical jets with a square disc. The shape will transform to concentric circles gradually alike to the round buoyant vertical jet in self-similar area with increasing of the distance from the disc.展开更多
Multi-orifice cross-flow jet mixers(MOCJMs)are used in various industrial applications due to their excellent mixing efficiency,but few studies have focused on the micromixing performance of MOCJMs.Herein,the flow cha...Multi-orifice cross-flow jet mixers(MOCJMs)are used in various industrial applications due to their excellent mixing efficiency,but few studies have focused on the micromixing performance of MOCJMs.Herein,the flow characteristics and micromixing performance inside the MOCJM were investigated using experiments and computational fluid dynamics(CFD)simulations based on the Villermaux/Dushman system and the finite-rate/modified eddy-dissipation model.The optimal A value was correlated with the characteristic parameters of MOCJMs to develop a CFD calculation method applicable to the study of the micromixing performance of the MOCJMs.Then the micromixing efficiency was evaluated using the segregation index XS,and the effects of operational and geometric parameters such as mixing flow Reynolds number(ReM),flow ratio(RF),total jet area(ST),the number of jet orifices(n),and outlet configuration on the micromixing efficiency were investigated.It was found that the intensive turbulent region generated by interactions between jets,as well as between jets and crossflows,facilitated rapid reactions.XS decreased with increasing ReM and decreasing RF.Furthermore,MOCJMs with lower ST,four jet orifices,and the narrower outlet configuration demonstrated a better micromixing efficiency.This study contributes to a deeper understanding of the micromixing performance of MOCJMs and provides valuable guidance for their design,optimization,and industrial application.展开更多
The effects of Reynolds number on both large-scale and small-scale turbulence properties are investigated in a square jet issuing from a square pipe. The detailed velocity fields were measured at five different exit R...The effects of Reynolds number on both large-scale and small-scale turbulence properties are investigated in a square jet issuing from a square pipe. The detailed velocity fields were measured at five different exit Reynolds numbers of 8 × 10^3 〈 Re 〈 5 × 10^4. It is found that both large-scale properties (e.g,, rates of mean velocity decay and spread) and small-scale properties (e.g., the dimensionless dissipation rate constant A = εL/(u^2)^3/2) are dependent on Re for Re ≤ 3 ×10^4 or Reλ ≤ 190, but virtually become Re-independent with increasing Re or Reλ. In addition, for Reλ 〉 190, the value ofA = εL/(u^2)^3/2 in the present square jet converges to 0.5, which is consistent with the observation in direct numerical simulations of box turbulence, but lower than that in circular jet, plate wake flows, and grid turbulence. The discrepancies in critical Reynolds number and A = εL/(u^2)^3/2 among different turbulent flows most likely result from the flow type and initial conditions.展开更多
A three-dimensional, nineteen-velocity(D3Q19) Lattice Boltzmann Method(LBM) model was developed to simulate the fluid flow of a laminar square jet in cross flows based on the single relaxation time algorithm. The code...A three-dimensional, nineteen-velocity(D3Q19) Lattice Boltzmann Method(LBM) model was developed to simulate the fluid flow of a laminar square jet in cross flows based on the single relaxation time algorithm. The code was validated by the mathematic solution of the Poiseuille flow in a square channel, and was further validated with a previous well studied empirical correlation for the central trajectory of a jet in cross flows. The developed LBM model was found to be able to capture the dominant vortex, i.e. the Counter-rotating Vortex Pair(CVP) and the upright wake vortex. Results show that the incoming fluid in the cross flow channel was entrained into the leeside of the jet fluid, which contributes to the blending of the jet. That the spread width of the transverse jet decreases with the velocity ratio. A layer-organized entrainment pattern was found indicating that the incoming fluid at the lower position is firstly entrained into the leeside of the jet, and followed by the incoming fluid at the upper position.展开更多
The phenomenon of wastewater discharged into coastal waters can be simplified as a turbulent jet under the effect of waves and currents. Previous studies have been carried out to investigate the jet behaviors under th...The phenomenon of wastewater discharged into coastal waters can be simplified as a turbulent jet under the effect of waves and currents. Previous studies have been carried out to investigate the jet behaviors under the current only or the wave only environment. To obtain better understanding of the jet behaviors in a realistic situation, a series of physical experiments on the initial dilution of a vertical round jet in the wavy cross-flow environment are conducted. The diluted processes of the jet are recorded by a high-resolution camcorder and the concentration fields of the jet are measured with a peristaltic suction pumping system. When the jet is discharged into the wavy cross-flow environment, a distinctive phenomenon, namely "effluent clouds", is observed. According to the quantitative measurements, the jet width in the wavy cross-flow environment increases more significantly than that does in the cross-flow only environment, indicating that the waves impose a positive effect on the enhancement of jet initial dilution. In order to generalize the experimental findings, a comprehensive velocity scale ua and a characteristic length scale l are introduced. Through dimensional analysis, it is found that the dimensionless centerline concentration trajectories cy/l is in proportion to 1/3 power of the dimensionless downstream distance x/l, and the dimensionless centerline dilution 2c aS Q/(u l) is proportional to the square of the dimensionless centerline trajectory cy/l. Several empirical equations are then derived by using the Froude number of cross-flow Frc as a reference coefficient. This paper provides a better understanding and new estimations of the jet initial dilution under the combined effect of waves and cross-flow current.展开更多
Due to the difference in density between the discharge effluent and coastal water,partially treated wastewater is often discharged into the marine environment as a buoyant jet via submarine outfalls with multiport dif...Due to the difference in density between the discharge effluent and coastal water,partially treated wastewater is often discharged into the marine environment as a buoyant jet via submarine outfalls with multiport diffusers.The dilution characteristics of effluent discharge(dual buoyant jets)in a wavy cross-flow environment were studied in a laboratory.The planar laser-induced fluorescence technique was used to obtain the concentration data of the jets.The effects of different environmental variables on the diffusion and dilution characteristics of the jets were examined through physical experiments,dimensional analysis,and empirical formulations.It was found that the dilution process of the dual jets could be divided into two components:the original jet component and the effluent cloud component.The jet-to-current velocity ratio was the main parameter affecting the concentration levels of the effluent cloud.The merging of the two jets increased the jet concentration in the flow field.When the jets traveled further downstream,the axial dilution increased gradually and then increased significantly along the axis.Under the effects of strong waves,the concentration contours branched into two peaks,and the mean dilution became more significant than under the effects of weak waves.Therefore,the dilution of the effluent discharge was expected to be significant under strong wave effects because the hydrodynamic force increased.A dilution equation was derived to improve our understanding of the dilution process of buoyant jets in a wavy cross-flow environment.This equation was used to determine the influences of the jet-to-current velocity ratio,wave-to-current velocity ratio,and Strouhal number on the minimum jet dilution.It revealed that the wave and buoyancy effects in effluent discharges were significant.展开更多
The injection characteristics of the main fuel nozzle,which is widely applied in advanced lean-premixed-prevaporized(LPP)low-emission combustors,can be simplified as the atomization and vaporization processes of a jet...The injection characteristics of the main fuel nozzle,which is widely applied in advanced lean-premixed-prevaporized(LPP)low-emission combustors,can be simplified as the atomization and vaporization processes of a jet into cross-flow.In this study,a nozzle with a diameter of 0.4 mm is designed and processed through the heating of the inlet air,and the vaporization characteristics are investigated.The optical measurement and cyclone separation methods are separately used to investigate the evaporation rate of a jet into cross-flow.Experimental results show that the fuel evaporation rate in cross-flow is mainly affected by the Weber number(We),equivalent ratio(φ),momentum rate of fuel to air(q),and air temperature.In addition,the inlet temperature is a crucial factor for the evaporation ratio of a jet into cross-flow.The evaporation results measured by two different methods in the same cross-flow are very close to each other with a deviation within 10%.展开更多
The flow characteristics of cavitation jets are essential issues among relevant studies. The physical properties of the jet are largely determined by the geometrical parameters of the nozzle. The structure and cavitat...The flow characteristics of cavitation jets are essential issues among relevant studies. The physical properties of the jet are largely determined by the geometrical parameters of the nozzle. The structure and cavitation jets characteristics of the angular-nozzle and the self-resonating cavitation nozzle have been extensively studied, but little research is conducted in the central-body cavitation nozzle mainly because of its hard processing and the cavitation jet effect not satisfactory. In this paper, a novel central-body nozzle (a non-plunger central-body nozzle with square outlet) is studied to solve above problems. Submerged jets discharged from the novel central-body nozzle are simulated, employing the full cavitation model. The impact of nozzle configuration on jet properties is analyzed. The analysis results indicate that when central-body relative diameter keeps constant, there is an optimal contraction degree of nozzle’s outlet, which can induce intense cavitation in the jet. The central-body relative diameter also affects jet profiles. In the case of large central-body relative diameter, most of the bubbles settle in the jet core. On the contrary, a smaller relative diameter makes bubbles concentrate in the interface between the jet and its surrounding fluid. Moreover, the shorter outlet part allows the cavitation zone further extend in both the axial and racial directions. The research results further consummate the study on the central-body nozzles and the correlation between cavitation jet and the structure, and elementarily reveal the mechanism of cavitation jet produced in a non-plunger novel central-body nozzle and the effect of the structure parameters on the cavitation jet, moreover, provide the theoretical basis for the optimal design of the nozzle.展开更多
A theoretical study has been undertaken to determine the flow characteristics associated with a three-dimensional laminar impinging jet issuing from a square pipe nozzle. Interesting flow structures around the jet are...A theoretical study has been undertaken to determine the flow characteristics associated with a three-dimensional laminar impinging jet issuing from a square pipe nozzle. Interesting flow structures around the jet are detected. The numerical result reveals the existence of four streamwise velocity off-center peaks near the impingement plate, which is different from the rectangular jet impingement. The mechanism of the formation of the off-center velocity peaks and the parameters affecting the flow-field characteristics are discussed by comparison of the computed results with different nozzle-to-plate spacings and Reynolds numbers.展开更多
基金Project supported by the Planned Item for Excellent Young Teachers Invested by Education Ministry of China (No.2003-99)
文摘Some experiments were made for the buoyant jet from a square orifice with a square disc placed on it in static ambient and concentration along the axis in self-similar area behind disc was measured. And at the same time a three-dimensional mathematical model was established to simulate the whole flowing under different conditions. All the results predicted by the numerical calculation were substantiated by the experiments. The results were compared with experiential formula for obstructed round buoyant ver- tical jets in static ambient and it was found that the two concentration distributions had good accordance. Star shape of temperature isolines on cross-sections in the near areas from the disc was found and it was a very special figure for obstructed square buoyant vertical jets with a square disc. The shape will transform to concentric circles gradually alike to the round buoyant vertical jet in self-similar area with increasing of the distance from the disc.
基金the financial support from the Shanghai Sailing Program,China(21YF1409500)the National Natural Science Foundation of China(22308100,22308105)+1 种基金the State Key Laboratory of Chemical Engineering(SKL-ChE-23Z01)the National Science Fund for Distinguished Young Scholars of China(22225804).
文摘Multi-orifice cross-flow jet mixers(MOCJMs)are used in various industrial applications due to their excellent mixing efficiency,but few studies have focused on the micromixing performance of MOCJMs.Herein,the flow characteristics and micromixing performance inside the MOCJM were investigated using experiments and computational fluid dynamics(CFD)simulations based on the Villermaux/Dushman system and the finite-rate/modified eddy-dissipation model.The optimal A value was correlated with the characteristic parameters of MOCJMs to develop a CFD calculation method applicable to the study of the micromixing performance of the MOCJMs.Then the micromixing efficiency was evaluated using the segregation index XS,and the effects of operational and geometric parameters such as mixing flow Reynolds number(ReM),flow ratio(RF),total jet area(ST),the number of jet orifices(n),and outlet configuration on the micromixing efficiency were investigated.It was found that the intensive turbulent region generated by interactions between jets,as well as between jets and crossflows,facilitated rapid reactions.XS decreased with increasing ReM and decreasing RF.Furthermore,MOCJMs with lower ST,four jet orifices,and the narrower outlet configuration demonstrated a better micromixing efficiency.This study contributes to a deeper understanding of the micromixing performance of MOCJMs and provides valuable guidance for their design,optimization,and industrial application.
基金supported by the Fundamental Research Funds for the Central Universities,China(3132015027)the general science research project of the education department of Liaoning Province,China(L2013198)the Natural Science Foundation of Liaoning Province,China(2014025012)
文摘The effects of Reynolds number on both large-scale and small-scale turbulence properties are investigated in a square jet issuing from a square pipe. The detailed velocity fields were measured at five different exit Reynolds numbers of 8 × 10^3 〈 Re 〈 5 × 10^4. It is found that both large-scale properties (e.g,, rates of mean velocity decay and spread) and small-scale properties (e.g., the dimensionless dissipation rate constant A = εL/(u^2)^3/2) are dependent on Re for Re ≤ 3 ×10^4 or Reλ ≤ 190, but virtually become Re-independent with increasing Re or Reλ. In addition, for Reλ 〉 190, the value ofA = εL/(u^2)^3/2 in the present square jet converges to 0.5, which is consistent with the observation in direct numerical simulations of box turbulence, but lower than that in circular jet, plate wake flows, and grid turbulence. The discrepancies in critical Reynolds number and A = εL/(u^2)^3/2 among different turbulent flows most likely result from the flow type and initial conditions.
基金Supported by the National Natural Science Foundation of China(51476145,51476146)
文摘A three-dimensional, nineteen-velocity(D3Q19) Lattice Boltzmann Method(LBM) model was developed to simulate the fluid flow of a laminar square jet in cross flows based on the single relaxation time algorithm. The code was validated by the mathematic solution of the Poiseuille flow in a square channel, and was further validated with a previous well studied empirical correlation for the central trajectory of a jet in cross flows. The developed LBM model was found to be able to capture the dominant vortex, i.e. the Counter-rotating Vortex Pair(CVP) and the upright wake vortex. Results show that the incoming fluid in the cross flow channel was entrained into the leeside of the jet fluid, which contributes to the blending of the jet. That the spread width of the transverse jet decreases with the velocity ratio. A layer-organized entrainment pattern was found indicating that the incoming fluid at the lower position is firstly entrained into the leeside of the jet, and followed by the incoming fluid at the upper position.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51379072 and 51309092)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20120094110016)+1 种基金the‘111’Project of the Ministry of Education and the State Administration of Foreign Experts AffairsChina(Grant No.B12032)
文摘The phenomenon of wastewater discharged into coastal waters can be simplified as a turbulent jet under the effect of waves and currents. Previous studies have been carried out to investigate the jet behaviors under the current only or the wave only environment. To obtain better understanding of the jet behaviors in a realistic situation, a series of physical experiments on the initial dilution of a vertical round jet in the wavy cross-flow environment are conducted. The diluted processes of the jet are recorded by a high-resolution camcorder and the concentration fields of the jet are measured with a peristaltic suction pumping system. When the jet is discharged into the wavy cross-flow environment, a distinctive phenomenon, namely "effluent clouds", is observed. According to the quantitative measurements, the jet width in the wavy cross-flow environment increases more significantly than that does in the cross-flow only environment, indicating that the waves impose a positive effect on the enhancement of jet initial dilution. In order to generalize the experimental findings, a comprehensive velocity scale ua and a characteristic length scale l are introduced. Through dimensional analysis, it is found that the dimensionless centerline concentration trajectories cy/l is in proportion to 1/3 power of the dimensionless downstream distance x/l, and the dimensionless centerline dilution 2c aS Q/(u l) is proportional to the square of the dimensionless centerline trajectory cy/l. Several empirical equations are then derived by using the Froude number of cross-flow Frc as a reference coefficient. This paper provides a better understanding and new estimations of the jet initial dilution under the combined effect of waves and cross-flow current.
基金supported by the Fundamental Research Funds for the Central Universities of China(Grant No.B200202057)and the National Natural Science Foundation of China(Grant No.51979076)。
文摘Due to the difference in density between the discharge effluent and coastal water,partially treated wastewater is often discharged into the marine environment as a buoyant jet via submarine outfalls with multiport diffusers.The dilution characteristics of effluent discharge(dual buoyant jets)in a wavy cross-flow environment were studied in a laboratory.The planar laser-induced fluorescence technique was used to obtain the concentration data of the jets.The effects of different environmental variables on the diffusion and dilution characteristics of the jets were examined through physical experiments,dimensional analysis,and empirical formulations.It was found that the dilution process of the dual jets could be divided into two components:the original jet component and the effluent cloud component.The jet-to-current velocity ratio was the main parameter affecting the concentration levels of the effluent cloud.The merging of the two jets increased the jet concentration in the flow field.When the jets traveled further downstream,the axial dilution increased gradually and then increased significantly along the axis.Under the effects of strong waves,the concentration contours branched into two peaks,and the mean dilution became more significant than under the effects of weak waves.Therefore,the dilution of the effluent discharge was expected to be significant under strong wave effects because the hydrodynamic force increased.A dilution equation was derived to improve our understanding of the dilution process of buoyant jets in a wavy cross-flow environment.This equation was used to determine the influences of the jet-to-current velocity ratio,wave-to-current velocity ratio,and Strouhal number on the minimum jet dilution.It revealed that the wave and buoyancy effects in effluent discharges were significant.
基金supported by the National Natural Science Foundation of China (Nos.51676097, 91741118)
文摘The injection characteristics of the main fuel nozzle,which is widely applied in advanced lean-premixed-prevaporized(LPP)low-emission combustors,can be simplified as the atomization and vaporization processes of a jet into cross-flow.In this study,a nozzle with a diameter of 0.4 mm is designed and processed through the heating of the inlet air,and the vaporization characteristics are investigated.The optical measurement and cyclone separation methods are separately used to investigate the evaporation rate of a jet into cross-flow.Experimental results show that the fuel evaporation rate in cross-flow is mainly affected by the Weber number(We),equivalent ratio(φ),momentum rate of fuel to air(q),and air temperature.In addition,the inlet temperature is a crucial factor for the evaporation ratio of a jet into cross-flow.The evaporation results measured by two different methods in the same cross-flow are very close to each other with a deviation within 10%.
基金supported by National Natural Science Foundation of China (Grant No. 50806031)
文摘The flow characteristics of cavitation jets are essential issues among relevant studies. The physical properties of the jet are largely determined by the geometrical parameters of the nozzle. The structure and cavitation jets characteristics of the angular-nozzle and the self-resonating cavitation nozzle have been extensively studied, but little research is conducted in the central-body cavitation nozzle mainly because of its hard processing and the cavitation jet effect not satisfactory. In this paper, a novel central-body nozzle (a non-plunger central-body nozzle with square outlet) is studied to solve above problems. Submerged jets discharged from the novel central-body nozzle are simulated, employing the full cavitation model. The impact of nozzle configuration on jet properties is analyzed. The analysis results indicate that when central-body relative diameter keeps constant, there is an optimal contraction degree of nozzle’s outlet, which can induce intense cavitation in the jet. The central-body relative diameter also affects jet profiles. In the case of large central-body relative diameter, most of the bubbles settle in the jet core. On the contrary, a smaller relative diameter makes bubbles concentrate in the interface between the jet and its surrounding fluid. Moreover, the shorter outlet part allows the cavitation zone further extend in both the axial and racial directions. The research results further consummate the study on the central-body nozzles and the correlation between cavitation jet and the structure, and elementarily reveal the mechanism of cavitation jet produced in a non-plunger novel central-body nozzle and the effect of the structure parameters on the cavitation jet, moreover, provide the theoretical basis for the optimal design of the nozzle.
文摘A theoretical study has been undertaken to determine the flow characteristics associated with a three-dimensional laminar impinging jet issuing from a square pipe nozzle. Interesting flow structures around the jet are detected. The numerical result reveals the existence of four streamwise velocity off-center peaks near the impingement plate, which is different from the rectangular jet impingement. The mechanism of the formation of the off-center velocity peaks and the parameters affecting the flow-field characteristics are discussed by comparison of the computed results with different nozzle-to-plate spacings and Reynolds numbers.