Highly efficient Cherenkov radiation (CR) is generated by the soliton self-frequency shift (SSFS) in the irregular point of a hollow-core photonic crystal fiber (HC-PCF) in our laboratory. The impacts of pump po...Highly efficient Cherenkov radiation (CR) is generated by the soliton self-frequency shift (SSFS) in the irregular point of a hollow-core photonic crystal fiber (HC-PCF) in our laboratory. The impacts of pump power and wavelength on the CR are investigated, and the corresponding nonlinear processes are discussed. When the average power of the 120 fs pump pulse increases from 500 mW to 700 mW, the Raman soliton shifts from 2210 nm to 2360 nm, the output power of the CR increases by 2.3 times, the maximum output power ratio of the CR at 539 nm to that of the residual pump is calculated to be 24.32:1, the width of the output optical spectrum at the visible wavelength broadens from 35 nm to 62 nm, and the conversion efficiency η of the CR in the experiment can be above 32%.展开更多
The theoretical study of dielectric-chiral photonic crystal fiber (PCF) with an elliptical hollow core is presented. The band structure of chiral photonic crystal (PhC) is calculated by using a modified plane-wave...The theoretical study of dielectric-chiral photonic crystal fiber (PCF) with an elliptical hollow core is presented. The band structure of chiral photonic crystal (PhC) is calculated by using a modified plane-wave expansion (PWE) method. By examining the out-of-plane photonic bandgaps (PBGs) of chiral PhC, a kind of chiral PCF with a hollow core is designed and their eigenstates are calculated. The distributions of mode field and polarization state are demonstrated, and how the structural asymmetry of the core together with the chirality in the background affects the modal polarization is discussed. The dependences of birefringence on chirality for different ellipticities of core are investigated.展开更多
We investigate numerically and experimentally the modification of the spontaneous emission rate for micrometersized light sources embedded in a hollow-core photonic crystal fiber (HCPCF). The diameter of the light s...We investigate numerically and experimentally the modification of the spontaneous emission rate for micrometersized light sources embedded in a hollow-core photonic crystal fiber (HCPCF). The diameter of the light source is deliberately chosen such that they could be easily introduced into the central hole of the hollow-core photonic crystal fiber by capillary force. The photoluminescence from the microparticles is measured by using an inverted microscope in combination with a spectrometer. The modification of the spontaneous emission rate is observed in a wavelength region where there is no band gap. The experimental observations are consistent with the simulation results obtained by the plane wave expansion and finite-difference time-domain techniques.展开更多
Efficient Cherenkov radiation (CR) is experimentally generated by a soliton self-frequency shift (SSFS) in a knot of hollow-core photonic crystal fiber (HC-PCF). When the angle of the half-wave plate is rotated ...Efficient Cherenkov radiation (CR) is experimentally generated by a soliton self-frequency shift (SSFS) in a knot of hollow-core photonic crystal fiber (HC-PCF). When the angle of the half-wave plate is rotated from 0° to 45°, the Raman soliton shifts from 2227 to 2300 nm, the output power of the CR increases 8.15 times, and the maximum output power ratio of the CR at 556 nm to the residual pump is estimated to be 20:1. The width of the output optical spectrum at visible wavelengths broadens from 25 to 45 nm, and the conversion efficiency of the CR can be above 28%. Moreover, the influences of the pump polarization and wavelength on the CR are studied, and the corresponding nonlinear processes are discussed.展开更多
The hollow core photonic crystal waveguide biosensor is designed and described.The biosensor was tested in experiments for artificial sweetener identifcation in drinks.The photonic crystal waveguide biosensor has a hi...The hollow core photonic crystal waveguide biosensor is designed and described.The biosensor was tested in experiments for artificial sweetener identifcation in drinks.The photonic crystal waveguide biosensor has a high sensitivity to the optical properties of liquids flling up the hollow core.The compactness,good integration ability to different optical systems and compatibility for use in industrial settings make such biosensor very promnising for v arious biomedical applicat ions.展开更多
A new type ultraflattened dispersion square-lattice photonic crystal fiber with two different air-hole diameters in cladding region is proposed and the dispersion is investigated using a compact 2-D finite difference ...A new type ultraflattened dispersion square-lattice photonic crystal fiber with two different air-hole diameters in cladding region is proposed and the dispersion is investigated using a compact 2-D finite difference frequency domain method with the anisotropic perfectly matched layers (PML) absorbing boundary conditions. Through numerical simulation and opti- mizing the geometrical parameters, we find that the photonic crystal fibers proposed can realize ultraflattened dispersion of 0±0.06 ps/(km·nm) in wa...展开更多
Stable opto-electronic oscillators (OEOs) are realized using long fiber delay lines and changes in the index of refraction of high quality factor delay line results in temperature sensitivity of OEOs. Temperature se...Stable opto-electronic oscillators (OEOs) are realized using long fiber delay lines and changes in the index of refraction of high quality factor delay line results in temperature sensitivity of OEOs. Temperature sensitivity of various OEOs is measured to compare index of refraction variation of standard (SMF-28) and photonic crystal fiber (PCF). Both hollow-core (HC) and solid-core (SC) versions of PCF are quantified. SC-PCF exhibited a factor of three reductions in the rate of index of refraction change (about +4.7 ppm/℃) with temperature over SMF-28 (about 12 ppm/℃) based OEO. Although HC-PCF have a greater attenuation per unit length, but those fibers have demonstrated a negative rate of change (about - 0.6 ppm/℃) in the effective index of refraction with temperature and prospect of thermal stability in the OEO using passive techniques is great when a combination of HC-PCF and SMF-28 are employed as fiber delay lines.展开更多
基金Project supported by the National Basic Research Program of China (Grant Nos. 2010CB327605 and 2010CB328300)the Fundamental Research Funds for the Central Universities,China (Grant Nos. 2011RC0309 and 2011RC008)the Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications,China (Grant No. CX201023)
文摘Highly efficient Cherenkov radiation (CR) is generated by the soliton self-frequency shift (SSFS) in the irregular point of a hollow-core photonic crystal fiber (HC-PCF) in our laboratory. The impacts of pump power and wavelength on the CR are investigated, and the corresponding nonlinear processes are discussed. When the average power of the 120 fs pump pulse increases from 500 mW to 700 mW, the Raman soliton shifts from 2210 nm to 2360 nm, the output power of the CR increases by 2.3 times, the maximum output power ratio of the CR at 539 nm to that of the residual pump is calculated to be 24.32:1, the width of the output optical spectrum at the visible wavelength broadens from 35 nm to 62 nm, and the conversion efficiency η of the CR in the experiment can be above 32%.
基金Project supported by the National Natural Science Foundation of China(Grant No.60977032)
文摘The theoretical study of dielectric-chiral photonic crystal fiber (PCF) with an elliptical hollow core is presented. The band structure of chiral photonic crystal (PhC) is calculated by using a modified plane-wave expansion (PWE) method. By examining the out-of-plane photonic bandgaps (PBGs) of chiral PhC, a kind of chiral PCF with a hollow core is designed and their eigenstates are calculated. The distributions of mode field and polarization state are demonstrated, and how the structural asymmetry of the core together with the chirality in the background affects the modal polarization is discussed. The dependences of birefringence on chirality for different ellipticities of core are investigated.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10674051 and 10811120010)the Program for Innovative Research Team of the Higher Education of Guangdong, China (Grant No 06CXTD005)
文摘We investigate numerically and experimentally the modification of the spontaneous emission rate for micrometersized light sources embedded in a hollow-core photonic crystal fiber (HCPCF). The diameter of the light source is deliberately chosen such that they could be easily introduced into the central hole of the hollow-core photonic crystal fiber by capillary force. The photoluminescence from the microparticles is measured by using an inverted microscope in combination with a spectrometer. The modification of the spontaneous emission rate is observed in a wavelength region where there is no band gap. The experimental observations are consistent with the simulation results obtained by the plane wave expansion and finite-difference time-domain techniques.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2010CB327605 and 2010CB328300)the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. 2011RC0309 and 2011RC008)the Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications, China (Grant No. CX201023)
文摘Efficient Cherenkov radiation (CR) is experimentally generated by a soliton self-frequency shift (SSFS) in a knot of hollow-core photonic crystal fiber (HC-PCF). When the angle of the half-wave plate is rotated from 0° to 45°, the Raman soliton shifts from 2227 to 2300 nm, the output power of the CR increases 8.15 times, and the maximum output power ratio of the CR at 556 nm to the residual pump is estimated to be 20:1. The width of the output optical spectrum at visible wavelengths broadens from 25 to 45 nm, and the conversion efficiency of the CR can be above 28%. Moreover, the influences of the pump polarization and wavelength on the CR are studied, and the corresponding nonlinear processes are discussed.
基金supported by Grant No.224014 PHOTONICS4LIFE of FP7-ICT-2007-2Project No.1.4.09+3 种基金RF Governmental contracts 11.519.11.2035,14.B37.21.0728 and 14.B37.21.0563FiDiPro,TEKES Program(40111/11),FinlandSCOPES EC,Uzb/Switz/RF,Swiss NSF,IZ74ZO 137423/1RF President's Grant 1177.2012.2"Scientific Schools".
文摘The hollow core photonic crystal waveguide biosensor is designed and described.The biosensor was tested in experiments for artificial sweetener identifcation in drinks.The photonic crystal waveguide biosensor has a high sensitivity to the optical properties of liquids flling up the hollow core.The compactness,good integration ability to different optical systems and compatibility for use in industrial settings make such biosensor very promnising for v arious biomedical applicat ions.
基金supported by the National Natural ScienceFoundation of China (Grant Nos. 60637010 and 60671036)the National Basic Research Program of China (Grant No.2007CB310403).
文摘A new type ultraflattened dispersion square-lattice photonic crystal fiber with two different air-hole diameters in cladding region is proposed and the dispersion is investigated using a compact 2-D finite difference frequency domain method with the anisotropic perfectly matched layers (PML) absorbing boundary conditions. Through numerical simulation and opti- mizing the geometrical parameters, we find that the photonic crystal fibers proposed can realize ultraflattened dispersion of 0±0.06 ps/(km·nm) in wa...
基金supported by F. Deborgies from the European Space Agency (ESA)
文摘Stable opto-electronic oscillators (OEOs) are realized using long fiber delay lines and changes in the index of refraction of high quality factor delay line results in temperature sensitivity of OEOs. Temperature sensitivity of various OEOs is measured to compare index of refraction variation of standard (SMF-28) and photonic crystal fiber (PCF). Both hollow-core (HC) and solid-core (SC) versions of PCF are quantified. SC-PCF exhibited a factor of three reductions in the rate of index of refraction change (about +4.7 ppm/℃) with temperature over SMF-28 (about 12 ppm/℃) based OEO. Although HC-PCF have a greater attenuation per unit length, but those fibers have demonstrated a negative rate of change (about - 0.6 ppm/℃) in the effective index of refraction with temperature and prospect of thermal stability in the OEO using passive techniques is great when a combination of HC-PCF and SMF-28 are employed as fiber delay lines.