The automatic detection of cardiac arrhythmias through remote monitoring is still a challenging task since electrocardiograms(ECGs)are easily contaminated by physiological artifacts and external noises,and these morph...The automatic detection of cardiac arrhythmias through remote monitoring is still a challenging task since electrocardiograms(ECGs)are easily contaminated by physiological artifacts and external noises,and these morphological characteristics show significant variations for different patients.A fast patient-specific arrhythmia diagnosis classifier scheme is proposed,in which a wavelet adaptive threshold denoising is combined with quantum genetic algorithm(QAG)based on least squares twin support vector machine(LSTSVM).The wavelet adaptive threshold denoising is employed for noise reduction,and then morphological features combined with the timing interval features are extracted to evaluate the classifier.For each patient,an individual and fast classifier will be trained by common and patient-specific training data.Following the recommendations of the Association for the Advancements of Medical Instrumentation(AAMI),experimental results over the MIT-BIH arrhythmia benchmark database demonstrated that our proposed method achieved the average detection accuracy of 98.22%,99.65%and 99.41%for the abnormal,ventricular ectopic beats(VEBs)and supra-VEBs(SVEBs),respectively.Besides the detection accuracy,sensitivity and specificity,our proposed method consumes the less CPU running time compared with the other representative state of the art methods.It can be ported to Android based embedded system,henceforth suitable for a wearable device.展开更多
In the present paper,the effect of the heat flux distribution on the natural convective flow inside a square cavity in the presence of a sloping magnetic field and magnetic nanoparticles is explored numerically.The no...In the present paper,the effect of the heat flux distribution on the natural convective flow inside a square cavity in the presence of a sloping magnetic field and magnetic nanoparticles is explored numerically.The nondimensional governing equations are solved in the framework of a finite element method implemented using the Galerkin approach.The role played by numerous model parameters in influencing the emerging thermal and concentration fields is examined;among them are:the location of the heat source and its lengthH,the magnitude of the thermal Rayleigh number,the nanoparticles shape and volume fraction,and the Hartmann number.It is found that the nanofluid velocity becomes higher when the thermal source length,the nanoparticles volume fraction and/or the thermal Rayleigh number are increased,while it decreases as the Hartmann number Ha grows and the position of the heat source moves toward the center of the lower wall of the cavity.Moreover,the temperature of the nanofluid grows with the extension of the thermal source and decreases slowly when the heat flux position moves toward the center of the lower wall.The outcomes of the research also indicate that the average Nusselt number becomes smaller on increasing Hartmann number Ha and heat source length H^(*).The addition of Fe_(3)O_(4) to engine oil leads to a higher rate of heat transfer with respect to the addition of SiO_(2) particles.Blade-shaped nanoparticles generate the highest value of the Nusselt number compared to all the other considered shapes.展开更多
This is a continued work in studying the wave propagation in a magneto-electroelastic square column (MEESC). Based on the analytic dispersive equation, group velocity equation and steady-state response obtained in o...This is a continued work in studying the wave propagation in a magneto-electroelastic square column (MEESC). Based on the analytic dispersive equation, group velocity equation and steady-state response obtained in our previous paper 'Steady-state response of the wave propagation in a magneto-electro-elastic square column' published in CME, the dynamical behavior of MEESC was studied in this paper. The unlimited column is an open system. The transientstate response in the open system subjected by arbitrary external fields was derived when the propagating wave pursuing method was introduced.展开更多
Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and w...Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and wavelet neural network(WNN).Extended entropy square error function is defined and its availability is proved theoretically.Replacing the mean square error criterion of BP algorithm with the EESE criterion,the proposed system is then applied to the on-line control of the cutting force with variable cutting parameters by searching adaptively wavelet base function and self adjusting scaling parameter,translating parameter of the wavelet and neural network weights.Simulation results show that the designed system is of fast response,non-overshoot and it is more effective than the conventional adaptive control of machining process based on the neural network.The suggested algorithm can adaptively adjust the feed rate on-line till achieving a constant cutting force approaching the reference force in varied cutting conditions,thus improving the machining efficiency and protecting the tool.展开更多
Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characte...Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characteristic parameters and hindering effective inverse interpretation. Considering the complexity and non-homogeneous spatial distribution of environmental noise and based on the theory of adaptive noise cancellation, a model system for noise cancellation using multi-reference coils was constructed to receive MRS signals. The feasibility of this system with theoretical calculation and experiments was analyzed and a modified sigmoid variable step size least mean square(SVSLMS) algorithm for noise cancellation was presented. The simulation results show that, the multi-reference coil method performs better than the single one on both signal-to-noise ratio(SNR) improvement and signal waveform optimization after filtering, under the condition of different noise correlations in the reference coils and primary detecting coils and different SNRs. In particular, when the noise correlation is poor and the SNR<0, the SNR can be improved by more than 8 dB after filtering with multi-reference coils. And the average fitting errors for initial amplitude and relaxation time are within 5%. Compared with the normalized least mean square(NLMS) algorithm and multichannel Wiener filter and processing field test data, the effectiveness of the proposed method is verified.展开更多
Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, co...Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.展开更多
Purpose:This paper aims to examine how the adoption decision of the internet banking in North Cyprus would be affected based on the following dimensions;the technology features,the personal characteristics,the social ...Purpose:This paper aims to examine how the adoption decision of the internet banking in North Cyprus would be affected based on the following dimensions;the technology features,the personal characteristics,the social environment and the expected risk.Design/methodology/approach:A self-administered survey was conducted with 291 participants responded to it.The partial least square approach of the structural equation modeling(PLS-SEM)is employed to investigate the direct effects of the proposed factors on the adoption decision.Additionally,the mediation test is used to examine indirect effects.Findings:Results showed that even though the participants appreciated the benefits of the online banking as the perceived usefulness factor exerts the greatest direct effect,they would rather use clear and easy-to-use websites,adding to that their assessments of the usefulness of these services are significantly influenced by the surrounding people’s views and prior experience.This is demonstrated by the total effects of the perceived ease of use and the subjective norm factors,which are greater than the direct effect of the perceived usefulness factor since both of these factors have significant direct and indirect effects mediated by the perceived usefulness factor.The negative impact of the perceived risk factor is weak compared to the previous factors.While the personal innovativeness factor showed the weakest effect among the proposed factors.展开更多
General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neu...General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme.展开更多
In order to calibrate electrical instruments and generate a constant magnetic field, a novel design method for square Helmholtz coil is proposed. According to the superposition principle in electromagnetics, the theor...In order to calibrate electrical instruments and generate a constant magnetic field, a novel design method for square Helmholtz coil is proposed. According to the superposition principle in electromagnetics, the theory of the square Helmholtz coil is established, and the design method is verified by Matlab calculation. Compared with conventional circular Helmholtz coil, the novel square one is with a larger uniform region. Simulation work is conducted in Maxwell, and the distribution of the magnetic field is obtained. The results demonstrate the validation of the applied calculation method of the proposed Helmholtz model. The space utilization rate η is used to make a comparison between the square and circular coils for the uniform region. The square Helmholtz coil is fabricated, the length of a single square coil is 1.5 m, and the amplitude of the magnetic field is controlled by the current. The GSM-19 T proton magnetometer is used to measure the amplitude of the magnetic field generated by the square Helmholtz coil. Experimental results indicate that a wide-range variable uniform magnetic field from 0 to 120 μT is generated in the center of Helmholtz coils.展开更多
In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to...In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to-controller path and controller-to-actuator path. A weighted least squares(WLS) method is designed to estimate the parameters of plant, which could overcome the data uncertainty problem caused by delays and dropout. This WLS method is proved to be consistent and has a good asymptotic property. Simulation examples are given to validate the results.展开更多
A quantitative structure-activity relationships (QSAR) study is suggested for the prediction of solubility of some thiazolidine-4- carboxylic acid derivatives in aqueous solution. Ab initio theory was used to calcul...A quantitative structure-activity relationships (QSAR) study is suggested for the prediction of solubility of some thiazolidine-4- carboxylic acid derivatives in aqueous solution. Ab initio theory was used to calculate some quantum chemical descriptors including electrostatic potentials and local charges at each atom, HOMO and LUMO energies, etc. Modeling of the solubility of thiazolidine- 4-carboxylic acid derivatives as a function of molecular structures was established by means of the partial least squares (PLS). The subset of descriptors, which resulted in the low prediction error, was selected by genetic algorithm. This model was applied for the prediction of the solubility of some thiazolidine-4-carboxylic acid derivatives, which were not in the modeling procedure. The relative errors of prediction lower that -4% was obtained by using GA-PLS method. The resulted model showed high prediction ability with RMSEP of 3.8836 and 2.9500 for PLS and GA-PLS models, respectively.展开更多
Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accu...Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accuracy of prediction models employing partial least squares(PLS) regression and support vector machine(SVM) regression technique for modeling the penetration rate of TBM. To develop the proposed models, the database that is composed of intact rock properties including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and peak slope index(PSI), and also rock mass properties including distance between planes of weakness(DPW) and the alpha angle(α) are input as dependent variables and the measured ROP is chosen as an independent variable. Two hundred sets of data are collected from Queens Water Tunnel and Karaj-Tehran water transfer tunnel TBM project. The accuracy of the prediction models is measured by the coefficient of determination(R2) and root mean squares error(RMSE) between predicted and observed yield employing 10-fold cross-validation schemes. The R2 and RMSE of prediction are 0.8183 and 0.1807 for SVMR method, and 0.9999 and 0.0011 for PLS method, respectively. Comparison between the values of statistical parameters reveals the superiority of the PLSR model over SVMR one.展开更多
A relaxation least squares-based learning algorithm for neual networks is proposed. Not only does it have a fast convergence rate, but it involves less computation quantity. Therefore, it is suitable to deal with the ...A relaxation least squares-based learning algorithm for neual networks is proposed. Not only does it have a fast convergence rate, but it involves less computation quantity. Therefore, it is suitable to deal with the case when a network has a large scale but the number of training data is very limited. It has been used in converting furnace process modelling, and impressive result has been obtained.展开更多
This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Le...This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Least Squares algorithm (OLS) called as OLS-AVURPSO method. The novelty is to develop an AVURPSO algorithm to form the hybrid OLS-AVURPSO method for designing an optimal RBFN. The proposed method at the upper level finds the global optimum of the spread factor parameter using AVURPSO while at the lower level automatically constructs the RBFN using OLS algorithm. Simulation results confirm that the RBFN is superior to Multilayered Perceptron Network (MLPN) in terms of network size and computing time. To demonstrate the effectiveness of proposed OLS-AVURPSO in the design of RBFN, the Mackey-Glass Chaotic Time-Series as an example is modeled by both MLPN and RBFN.展开更多
Simultaneous determination of heavy metal cations and accurate quantitative prediction of them are of great interest in analytical chemistry.This work has focused on a comprehensive comparison of partial least squares...Simultaneous determination of heavy metal cations and accurate quantitative prediction of them are of great interest in analytical chemistry.This work has focused on a comprehensive comparison of partial least squares(PLS-1)and artificial neural networks(ANN)as two types of chemometric methods.For this purpose,aluminum,iron and copper were studied as three analytes whose UV-Vis absorption spectra highly overlap each other.Accordance with determined parameters(ligand concentration,pH,waiting times,the relationship between absorbance and concentration of metal ion effect and foreign ions)are provided and the optimum conditions.After establishing the optimum conditions for Fe^(3+),Al^(3+) and Cu^(2+) containing mixtures spectrophotometric determinations and the data calibration method of least squares(PLS-1)regression,and artificial neural network(ANN)methods were used.Chemometric methods are applied in a fast,simple,and the results are applicable.展开更多
Electroless CoNiWP magnetic films were prepared by varying the bath pH and then characterized by energy dispersive X-ray analysis, X-ray diffraction and magnetic force microscopy, it has been found that the microstruc...Electroless CoNiWP magnetic films were prepared by varying the bath pH and then characterized by energy dispersive X-ray analysis, X-ray diffraction and magnetic force microscopy, it has been found that the microstructure and the magnetic properties of films were influenced greatly by the bath pH. At the bath pH 8.06, the grain size and coercivity of the films reach maximuml while the squareness (Mr/Ms) of MH curves reaches minimum. The Henkel plots indicates that the exchange-coupling interaction is very weak at this pH, which may be caused by phase-separation and large grain size, and then results in the lowest squareness. At pH above 8.5, obvious exchange-coupling interaction is observed because of the inexistence of phase-separation and the refinement of grain size.展开更多
Study on solving nonlinear least squares adjustment by parameters is one of the most important and new subjects in modern surveying and mapping field . Many researchers have done a lot of work and gained some solving ...Study on solving nonlinear least squares adjustment by parameters is one of the most important and new subjects in modern surveying and mapping field . Many researchers have done a lot of work and gained some solving methods. These methods mainly include iterative algorithms and direct algorithms mainly. The former searches some methods of rapid convergence based on which surveying adjustment is a kind of problem of nonlinear programming. Among them the iterative algorithms of the most in common use are the Gauss-Newton method, damped least quares, quasi-Newton method and some mutations etc. Although these methods improved the quantity of the observation results to a certain degree, and increased the accuracy of the adjustment results, what we want is whether the initial values of unknown parameters are close to their real values. Of course, the model of the latter has better degree in linearity, that is to say, they nearly have the meaning of deeper theories researches. This paper puts forward a kind of method of solving the problems of nonlinear least squares adjustment by parameters based on neural network theory, and studies its stability and convergency. The results of calculating of living example indicate the method acts well for solving parameters problems by nonlinear least squares adjustment without giving exact approximation of parameters.展开更多
Investigation into the magnets with different squareness of hysteresis loop(SHL) reveals that the microstructure of sintered NdFeB magnets has great effects on the SHL of the magnets. The abnormal grain growth deterio...Investigation into the magnets with different squareness of hysteresis loop(SHL) reveals that the microstructure of sintered NdFeB magnets has great effects on the SHL of the magnets. The abnormal grain growth deteriorates the SHL seriously. The shape of the grain and the grain boundary affect the intensity of demagnetization field, and consequently on the SHL. The added elements have effects on the phase structures and distributions in the magnets, which influences the uniform of demagnetization field.展开更多
The Galerkin-Petrov least squares method is combined with the mixed finite element method to deal with the stationary, incompressible magnetohydrodynamics system of equations with viscosity. A Galerkin-Petrov least sq...The Galerkin-Petrov least squares method is combined with the mixed finite element method to deal with the stationary, incompressible magnetohydrodynamics system of equations with viscosity. A Galerkin-Petrov least squares mixed finite element format for the stationary incompressible magnetohydrodynamics equations is presented. And the existence and error estimates of its solution are derived. Through this method, the combination among the mixed finite element spaces does not demand the discrete Babuska-Brezzi stability conditions so that the mixed finite element spaces could be chosen arbitrartily and the error estimates with optimal order could be obtained.展开更多
The application of artificial neural network to predict the ultimate bearing capacity of CFST ( concrete-filled square steel tubes) short columns under axial loading is explored. Input parameters consiste of concret...The application of artificial neural network to predict the ultimate bearing capacity of CFST ( concrete-filled square steel tubes) short columns under axial loading is explored. Input parameters consiste of concrete compressive strength, yield strength of steel tube, confinement index, sectional dimension and width-to-thickness ratio. The ultimate bearing capacity is the only output parameter. A multilayer feedforward neural network is used to describe the nonlinear relationships between the input and output variables. Fifty-five experimental data of CFST short columns under axial loading are used to train and test the neural network. A comparison between the neural network model and three parameter models shows that the neural network model possesses good accuracy and could be a practical method for predicting the ultimate strength of axially loaded CFST short columns.展开更多
基金Supported by the National Natural Science Foundation of China(61571063)Key Scientific Research Projects of Colleges and Universities in Henan Province(20A510014)Key Scientific and Technological Projects in Henan Province。
文摘The automatic detection of cardiac arrhythmias through remote monitoring is still a challenging task since electrocardiograms(ECGs)are easily contaminated by physiological artifacts and external noises,and these morphological characteristics show significant variations for different patients.A fast patient-specific arrhythmia diagnosis classifier scheme is proposed,in which a wavelet adaptive threshold denoising is combined with quantum genetic algorithm(QAG)based on least squares twin support vector machine(LSTSVM).The wavelet adaptive threshold denoising is employed for noise reduction,and then morphological features combined with the timing interval features are extracted to evaluate the classifier.For each patient,an individual and fast classifier will be trained by common and patient-specific training data.Following the recommendations of the Association for the Advancements of Medical Instrumentation(AAMI),experimental results over the MIT-BIH arrhythmia benchmark database demonstrated that our proposed method achieved the average detection accuracy of 98.22%,99.65%and 99.41%for the abnormal,ventricular ectopic beats(VEBs)and supra-VEBs(SVEBs),respectively.Besides the detection accuracy,sensitivity and specificity,our proposed method consumes the less CPU running time compared with the other representative state of the art methods.It can be ported to Android based embedded system,henceforth suitable for a wearable device.
基金supported by the Sultan Qaboos University[IG/SCI/DOMS/18/10].
文摘In the present paper,the effect of the heat flux distribution on the natural convective flow inside a square cavity in the presence of a sloping magnetic field and magnetic nanoparticles is explored numerically.The nondimensional governing equations are solved in the framework of a finite element method implemented using the Galerkin approach.The role played by numerous model parameters in influencing the emerging thermal and concentration fields is examined;among them are:the location of the heat source and its lengthH,the magnitude of the thermal Rayleigh number,the nanoparticles shape and volume fraction,and the Hartmann number.It is found that the nanofluid velocity becomes higher when the thermal source length,the nanoparticles volume fraction and/or the thermal Rayleigh number are increased,while it decreases as the Hartmann number Ha grows and the position of the heat source moves toward the center of the lower wall of the cavity.Moreover,the temperature of the nanofluid grows with the extension of the thermal source and decreases slowly when the heat flux position moves toward the center of the lower wall.The outcomes of the research also indicate that the average Nusselt number becomes smaller on increasing Hartmann number Ha and heat source length H^(*).The addition of Fe_(3)O_(4) to engine oil leads to a higher rate of heat transfer with respect to the addition of SiO_(2) particles.Blade-shaped nanoparticles generate the highest value of the Nusselt number compared to all the other considered shapes.
基金supported by the National Natural Science Foundation of China(No.10572001).
文摘This is a continued work in studying the wave propagation in a magneto-electroelastic square column (MEESC). Based on the analytic dispersive equation, group velocity equation and steady-state response obtained in our previous paper 'Steady-state response of the wave propagation in a magneto-electro-elastic square column' published in CME, the dynamical behavior of MEESC was studied in this paper. The unlimited column is an open system. The transientstate response in the open system subjected by arbitrary external fields was derived when the propagating wave pursuing method was introduced.
基金Sponsored by the Natural Science Foundation of Guangdong Province(Grant No.06025546)the National Natural Science Foundation of China(Grant No.50305005).
文摘Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and wavelet neural network(WNN).Extended entropy square error function is defined and its availability is proved theoretically.Replacing the mean square error criterion of BP algorithm with the EESE criterion,the proposed system is then applied to the on-line control of the cutting force with variable cutting parameters by searching adaptively wavelet base function and self adjusting scaling parameter,translating parameter of the wavelet and neural network weights.Simulation results show that the designed system is of fast response,non-overshoot and it is more effective than the conventional adaptive control of machining process based on the neural network.The suggested algorithm can adaptively adjust the feed rate on-line till achieving a constant cutting force approaching the reference force in varied cutting conditions,thus improving the machining efficiency and protecting the tool.
基金Projects(41204079,41504086)supported by the National Natural Science Foundation of ChinaProject(20160101281JC)supported by the Natural Science Foundation of Jilin Province,ChinaProjects(2016M590258,2015T80301)supported by the Postdoctoral Science Foundation of China
文摘Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characteristic parameters and hindering effective inverse interpretation. Considering the complexity and non-homogeneous spatial distribution of environmental noise and based on the theory of adaptive noise cancellation, a model system for noise cancellation using multi-reference coils was constructed to receive MRS signals. The feasibility of this system with theoretical calculation and experiments was analyzed and a modified sigmoid variable step size least mean square(SVSLMS) algorithm for noise cancellation was presented. The simulation results show that, the multi-reference coil method performs better than the single one on both signal-to-noise ratio(SNR) improvement and signal waveform optimization after filtering, under the condition of different noise correlations in the reference coils and primary detecting coils and different SNRs. In particular, when the noise correlation is poor and the SNR<0, the SNR can be improved by more than 8 dB after filtering with multi-reference coils. And the average fitting errors for initial amplitude and relaxation time are within 5%. Compared with the normalized least mean square(NLMS) algorithm and multichannel Wiener filter and processing field test data, the effectiveness of the proposed method is verified.
基金Supported by "863" Program of P. R. China(2002AA2Z4291)
文摘Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.
文摘Purpose:This paper aims to examine how the adoption decision of the internet banking in North Cyprus would be affected based on the following dimensions;the technology features,the personal characteristics,the social environment and the expected risk.Design/methodology/approach:A self-administered survey was conducted with 291 participants responded to it.The partial least square approach of the structural equation modeling(PLS-SEM)is employed to investigate the direct effects of the proposed factors on the adoption decision.Additionally,the mediation test is used to examine indirect effects.Findings:Results showed that even though the participants appreciated the benefits of the online banking as the perceived usefulness factor exerts the greatest direct effect,they would rather use clear and easy-to-use websites,adding to that their assessments of the usefulness of these services are significantly influenced by the surrounding people’s views and prior experience.This is demonstrated by the total effects of the perceived ease of use and the subjective norm factors,which are greater than the direct effect of the perceived usefulness factor since both of these factors have significant direct and indirect effects mediated by the perceived usefulness factor.The negative impact of the perceived risk factor is weak compared to the previous factors.While the personal innovativeness factor showed the weakest effect among the proposed factors.
基金Tianjin Natural Science Foundation !983602011National 863/CIMS Research Foundation !863-511-945-010
文摘General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme.
基金The National Natural Science Foundation of China(No.61327803)
文摘In order to calibrate electrical instruments and generate a constant magnetic field, a novel design method for square Helmholtz coil is proposed. According to the superposition principle in electromagnetics, the theory of the square Helmholtz coil is established, and the design method is verified by Matlab calculation. Compared with conventional circular Helmholtz coil, the novel square one is with a larger uniform region. Simulation work is conducted in Maxwell, and the distribution of the magnetic field is obtained. The results demonstrate the validation of the applied calculation method of the proposed Helmholtz model. The space utilization rate η is used to make a comparison between the square and circular coils for the uniform region. The square Helmholtz coil is fabricated, the length of a single square coil is 1.5 m, and the amplitude of the magnetic field is controlled by the current. The GSM-19 T proton magnetometer is used to measure the amplitude of the magnetic field generated by the square Helmholtz coil. Experimental results indicate that a wide-range variable uniform magnetic field from 0 to 120 μT is generated in the center of Helmholtz coils.
基金Supported by the National Natural Science Foundation of China(61290324)
文摘In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to-controller path and controller-to-actuator path. A weighted least squares(WLS) method is designed to estimate the parameters of plant, which could overcome the data uncertainty problem caused by delays and dropout. This WLS method is proved to be consistent and has a good asymptotic property. Simulation examples are given to validate the results.
文摘A quantitative structure-activity relationships (QSAR) study is suggested for the prediction of solubility of some thiazolidine-4- carboxylic acid derivatives in aqueous solution. Ab initio theory was used to calculate some quantum chemical descriptors including electrostatic potentials and local charges at each atom, HOMO and LUMO energies, etc. Modeling of the solubility of thiazolidine- 4-carboxylic acid derivatives as a function of molecular structures was established by means of the partial least squares (PLS). The subset of descriptors, which resulted in the low prediction error, was selected by genetic algorithm. This model was applied for the prediction of the solubility of some thiazolidine-4-carboxylic acid derivatives, which were not in the modeling procedure. The relative errors of prediction lower that -4% was obtained by using GA-PLS method. The resulted model showed high prediction ability with RMSEP of 3.8836 and 2.9500 for PLS and GA-PLS models, respectively.
基金Project(2010CB732004)supported by the National Basic Research Program of ChinaProjects(50934006,41272304)supported by the National Natural Science Foundation of China
文摘Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accuracy of prediction models employing partial least squares(PLS) regression and support vector machine(SVM) regression technique for modeling the penetration rate of TBM. To develop the proposed models, the database that is composed of intact rock properties including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and peak slope index(PSI), and also rock mass properties including distance between planes of weakness(DPW) and the alpha angle(α) are input as dependent variables and the measured ROP is chosen as an independent variable. Two hundred sets of data are collected from Queens Water Tunnel and Karaj-Tehran water transfer tunnel TBM project. The accuracy of the prediction models is measured by the coefficient of determination(R2) and root mean squares error(RMSE) between predicted and observed yield employing 10-fold cross-validation schemes. The R2 and RMSE of prediction are 0.8183 and 0.1807 for SVMR method, and 0.9999 and 0.0011 for PLS method, respectively. Comparison between the values of statistical parameters reveals the superiority of the PLSR model over SVMR one.
基金This project was supported by the National Natural Science Foundation of China (No. 60174021)the Key Project of Tianjin Natural Science Foundation (No.010115).
文摘A relaxation least squares-based learning algorithm for neual networks is proposed. Not only does it have a fast convergence rate, but it involves less computation quantity. Therefore, it is suitable to deal with the case when a network has a large scale but the number of training data is very limited. It has been used in converting furnace process modelling, and impressive result has been obtained.
文摘This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Least Squares algorithm (OLS) called as OLS-AVURPSO method. The novelty is to develop an AVURPSO algorithm to form the hybrid OLS-AVURPSO method for designing an optimal RBFN. The proposed method at the upper level finds the global optimum of the spread factor parameter using AVURPSO while at the lower level automatically constructs the RBFN using OLS algorithm. Simulation results confirm that the RBFN is superior to Multilayered Perceptron Network (MLPN) in terms of network size and computing time. To demonstrate the effectiveness of proposed OLS-AVURPSO in the design of RBFN, the Mackey-Glass Chaotic Time-Series as an example is modeled by both MLPN and RBFN.
文摘Simultaneous determination of heavy metal cations and accurate quantitative prediction of them are of great interest in analytical chemistry.This work has focused on a comprehensive comparison of partial least squares(PLS-1)and artificial neural networks(ANN)as two types of chemometric methods.For this purpose,aluminum,iron and copper were studied as three analytes whose UV-Vis absorption spectra highly overlap each other.Accordance with determined parameters(ligand concentration,pH,waiting times,the relationship between absorbance and concentration of metal ion effect and foreign ions)are provided and the optimum conditions.After establishing the optimum conditions for Fe^(3+),Al^(3+) and Cu^(2+) containing mixtures spectrophotometric determinations and the data calibration method of least squares(PLS-1)regression,and artificial neural network(ANN)methods were used.Chemometric methods are applied in a fast,simple,and the results are applicable.
基金the National Natural Science foundation of China under grant No.50572083.
文摘Electroless CoNiWP magnetic films were prepared by varying the bath pH and then characterized by energy dispersive X-ray analysis, X-ray diffraction and magnetic force microscopy, it has been found that the microstructure and the magnetic properties of films were influenced greatly by the bath pH. At the bath pH 8.06, the grain size and coercivity of the films reach maximuml while the squareness (Mr/Ms) of MH curves reaches minimum. The Henkel plots indicates that the exchange-coupling interaction is very weak at this pH, which may be caused by phase-separation and large grain size, and then results in the lowest squareness. At pH above 8.5, obvious exchange-coupling interaction is observed because of the inexistence of phase-separation and the refinement of grain size.
基金Project (40174003) supported by the National Natural Science Foundation of China
文摘Study on solving nonlinear least squares adjustment by parameters is one of the most important and new subjects in modern surveying and mapping field . Many researchers have done a lot of work and gained some solving methods. These methods mainly include iterative algorithms and direct algorithms mainly. The former searches some methods of rapid convergence based on which surveying adjustment is a kind of problem of nonlinear programming. Among them the iterative algorithms of the most in common use are the Gauss-Newton method, damped least quares, quasi-Newton method and some mutations etc. Although these methods improved the quantity of the observation results to a certain degree, and increased the accuracy of the adjustment results, what we want is whether the initial values of unknown parameters are close to their real values. Of course, the model of the latter has better degree in linearity, that is to say, they nearly have the meaning of deeper theories researches. This paper puts forward a kind of method of solving the problems of nonlinear least squares adjustment by parameters based on neural network theory, and studies its stability and convergency. The results of calculating of living example indicate the method acts well for solving parameters problems by nonlinear least squares adjustment without giving exact approximation of parameters.
基金Project supported by Shanghai Leading Academic Discipline (P1502)
文摘Investigation into the magnets with different squareness of hysteresis loop(SHL) reveals that the microstructure of sintered NdFeB magnets has great effects on the SHL of the magnets. The abnormal grain growth deteriorates the SHL seriously. The shape of the grain and the grain boundary affect the intensity of demagnetization field, and consequently on the SHL. The added elements have effects on the phase structures and distributions in the magnets, which influences the uniform of demagnetization field.
基金Project supported by the National Natural Science Foundation of China (Nos.10471100 and 40437017)the Science and Technology Foundation of Beijing Jiaotong University
文摘The Galerkin-Petrov least squares method is combined with the mixed finite element method to deal with the stationary, incompressible magnetohydrodynamics system of equations with viscosity. A Galerkin-Petrov least squares mixed finite element format for the stationary incompressible magnetohydrodynamics equations is presented. And the existence and error estimates of its solution are derived. Through this method, the combination among the mixed finite element spaces does not demand the discrete Babuska-Brezzi stability conditions so that the mixed finite element spaces could be chosen arbitrartily and the error estimates with optimal order could be obtained.
文摘The application of artificial neural network to predict the ultimate bearing capacity of CFST ( concrete-filled square steel tubes) short columns under axial loading is explored. Input parameters consiste of concrete compressive strength, yield strength of steel tube, confinement index, sectional dimension and width-to-thickness ratio. The ultimate bearing capacity is the only output parameter. A multilayer feedforward neural network is used to describe the nonlinear relationships between the input and output variables. Fifty-five experimental data of CFST short columns under axial loading are used to train and test the neural network. A comparison between the neural network model and three parameter models shows that the neural network model possesses good accuracy and could be a practical method for predicting the ultimate strength of axially loaded CFST short columns.