Improving the focusing capability of pre-stack time migration allows the imaged section to reflect structural characteristics, depth, and interface shape and it is a key step for the preparation of the initial depth m...Improving the focusing capability of pre-stack time migration allows the imaged section to reflect structural characteristics, depth, and interface shape and it is a key step for the preparation of the initial depth migration velocity model. The traditional symmetrical travel time equation is derived based on the assumption of a layered model. It is difficult to achieve the desired effect of focusing in media with strong lateral variation. The nonsymmetrical travel time equation based on Lie algebra and a pseudo-differential operator contains a lateral velocity derivative which can improve the focusing capability even in strongly lateral variable media and also the computation precision of the weight coefficients for relative amplitude preservation. Compared with the symmetrical methods, the nonsymmetrical method is more effective. In this paper, we describe several key steps of nonsymmetric pre-stack travel time calculation and present some test results using synthetic and real data.展开更多
We give a new characterization ofq-uniform PL-convexity of complex Banach space by using the existence of a kind of functions with two variables and then prove a sharp weak (1, 1)-type inequality for analytic martinga...We give a new characterization ofq-uniform PL-convexity of complex Banach space by using the existence of a kind of functions with two variables and then prove a sharp weak (1, 1)-type inequality for analytic martingales with values in the Banach space.展开更多
基金This research was supported by the National Basic Research Program of China (Grant No. 2007CB209603), Key Project of the National Natural Science Foundation (Grant No. 40830424), State Key Laboratory of Geological Processes and Mineral Resources Geo-detection Laboratory of the Ministry of Education for their sponsorship (GPMR 200633, GDL0801).
文摘Improving the focusing capability of pre-stack time migration allows the imaged section to reflect structural characteristics, depth, and interface shape and it is a key step for the preparation of the initial depth migration velocity model. The traditional symmetrical travel time equation is derived based on the assumption of a layered model. It is difficult to achieve the desired effect of focusing in media with strong lateral variation. The nonsymmetrical travel time equation based on Lie algebra and a pseudo-differential operator contains a lateral velocity derivative which can improve the focusing capability even in strongly lateral variable media and also the computation precision of the weight coefficients for relative amplitude preservation. Compared with the symmetrical methods, the nonsymmetrical method is more effective. In this paper, we describe several key steps of nonsymmetric pre-stack travel time calculation and present some test results using synthetic and real data.
文摘We give a new characterization ofq-uniform PL-convexity of complex Banach space by using the existence of a kind of functions with two variables and then prove a sharp weak (1, 1)-type inequality for analytic martingales with values in the Banach space.