With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materia...With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materials have disadvantages such as high density,easy corrosion,difficult processing and high price,etc.Polymer matrix EMI shielding composites possess light weight,corrosion resistance and easy processing.However,the current polymer matrix composites present relatively low electrical conductivity and poor EMI shielding performance.This review firstly discusses the key concept,loss mechanism and test method of EMI shielding.Then the current development status of EMI shielding materials is summarized,and the research progress of polymer matrix EMI shielding composites with different structures is illustrated,especially for their preparation methods and evaluation.Finally,the corresponding key scientific and technical problems are proposed,and their development trend is also prospected.展开更多
Wearable devices with efficient thermal management and electromagnetic interference(EMI) shielding are highly desirable for improving human comfort and safety. Herein, a multifunctional wearable carbon fibers(CF) @ po...Wearable devices with efficient thermal management and electromagnetic interference(EMI) shielding are highly desirable for improving human comfort and safety. Herein, a multifunctional wearable carbon fibers(CF) @ polyaniline(PANI)/silver nanowires(Ag NWs) composites with a “branch-trunk” interlocked micro/nanostructure were achieved through "three-in-one" multi-scale design. The reasonable assembly of the three kinds of one-dimensional(1D) materials can fully exert their excellent properties i.e., the superior flexibility of CF, the robustness of PANI, and the splendid conductivity of Ag NWs. Consequently, the constructed flexible composite demonstrates enhanced mechanical properties with a tensile stress of 1.2 MPa, which was almost 6 times that of the original material. This is mainly attributed to the fact that the PNAI(branch) was firmly attached to the CF(trunk) through polydopamine(PDA), forming a robust interlocked structure. Meanwhile, the composite possesses excellent thermal insulation and heat preservation capacity owing to the synergistically low thermal conductivity and emissivity. More importantly, the conductive path of the composite established by the three 1D materials greatly improved its EMI shielding property and Joule heating performance at low applied voltage. This work paves the way for rational utilization of the intrinsic properties of 1D materials, as well as provides a promising strategy for designing wearable electromagnetic protection and thermal energy management devices.展开更多
The integration and miniaturization of chips lead to inevitable overheating and increasing electromagnetic interference (EMI) problems, which threaten the performance, stability, and lifetime of electroniccomponents. ...The integration and miniaturization of chips lead to inevitable overheating and increasing electromagnetic interference (EMI) problems, which threaten the performance, stability, and lifetime of electroniccomponents. Therefore, it is important to improve the heat dissipation and EMI shielding performancein device packaging for the steady operation of electronic products. In recent years, due to its intrinsic superior thermal conductivity, proper electrical conductivity, light-weight, and structural adjustability,graphene has been widely used as high thermal and conductive fillers incorporated in the polymer matrix to improve the thermal conductivity and electrical conductivity of composites. This review concludesthe recent development of graphene/polymer composites by using graphene as fillers to improve thethermal conductivity and EMI shielding effectiveness (EMI SE). The structure of graphene embedded inthe composites varies from zero-dimension (0D), one-dimension (1D) to two-dimensions (2D). Moreover,highly thermally and electrically conductive fillers with different dimensions were also modified on thegraphene to improve the composite performance. Finally, this review also makes prospects for the development trend of graphene/polymer composites with high thermal conductivity and EMI SE in the future.展开更多
With the rapid development of the electronic industry and wireless communication technology,electromagnetic interference(EMI)or pollution has been increasingly serious.This not only severely endangers the normal opera...With the rapid development of the electronic industry and wireless communication technology,electromagnetic interference(EMI)or pollution has been increasingly serious.This not only severely endangers the normal operation of electronic equipment but also threatens human health.Therefore,it is urgent to develop high-performance EMI shielding materials.The advent of hydrogel-based materials has given EMI shields a novel option.Hydrogels combined with conductive functional materials have good mechanical flexibility,fatigue durability,and even high stretchability,which are beneficial for a wide range of applications,especially in EMI shielding and some flexible functional devices.Herein,the current progress of hydrogel-based EMI shields was reviewed,in the meanwhile,some novel studies about pore structure design that we believe will help advance the development of hydrogel-based EMI shielding materials were also included.In the outlook,we suggested some promising development directions for the hydrogel-based EMI shields,by which we hope to provide a reference for designing hydrogels with excellent EMI shielding performance and multifunctionalities.展开更多
Sustainable and renewable nanocellulose attracts more and more attention in various fields due to its high strength-to-weight ratio,small diameter,large aspect ratio,and abundant functional groups.The excellent proper...Sustainable and renewable nanocellulose attracts more and more attention in various fields due to its high strength-to-weight ratio,small diameter,large aspect ratio,and abundant functional groups.The excellent properties and structural characteristics enabled a great potential of nanocellulose for efficient interactions with functional nanomaterials such as carbon nanotube,graphene,transition metal carbides/nitrides(MXenes),and metal nanoparticles,which is beneficial for preparing high-performance electromagnetic interference(EMI)shields.We review the advances in the nanocelluloseassisted preparation of composite films and aerogels for EMI shielding application.The nanocellulose-based composites are evaluated in terms of their EMI shielding performance and the shielding mechanisms,including conduction,polarization,and multiple reflections are summarized.In addition to the constituent structure and contents,we highlight the significance of the microstructure design in enhancing the EMI shielding performance of the nanocellulose-based EMI shields.Finally,the current challenges and outlook for these fascinating nanocellulose-based EMI shielding composites are discussed.展开更多
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(51903145 and 51973173)Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)+1 种基金Fundamental Research Funds for the Central Universities(D5000210627)This work is also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materials have disadvantages such as high density,easy corrosion,difficult processing and high price,etc.Polymer matrix EMI shielding composites possess light weight,corrosion resistance and easy processing.However,the current polymer matrix composites present relatively low electrical conductivity and poor EMI shielding performance.This review firstly discusses the key concept,loss mechanism and test method of EMI shielding.Then the current development status of EMI shielding materials is summarized,and the research progress of polymer matrix EMI shielding composites with different structures is illustrated,especially for their preparation methods and evaluation.Finally,the corresponding key scientific and technical problems are proposed,and their development trend is also prospected.
基金supported by the National Nature Science Foundation of China (Nos. 51971111, 52273247)the facilities in the Center for Microscopy and Analysis at Nanjing University of Aeronautics and Astronautics and the Fund of Prospective Layout of Scientific Research for NUAA (Nanjing University of Aeronautics and Astronautics (No. ILA220461A22)。
文摘Wearable devices with efficient thermal management and electromagnetic interference(EMI) shielding are highly desirable for improving human comfort and safety. Herein, a multifunctional wearable carbon fibers(CF) @ polyaniline(PANI)/silver nanowires(Ag NWs) composites with a “branch-trunk” interlocked micro/nanostructure were achieved through "three-in-one" multi-scale design. The reasonable assembly of the three kinds of one-dimensional(1D) materials can fully exert their excellent properties i.e., the superior flexibility of CF, the robustness of PANI, and the splendid conductivity of Ag NWs. Consequently, the constructed flexible composite demonstrates enhanced mechanical properties with a tensile stress of 1.2 MPa, which was almost 6 times that of the original material. This is mainly attributed to the fact that the PNAI(branch) was firmly attached to the CF(trunk) through polydopamine(PDA), forming a robust interlocked structure. Meanwhile, the composite possesses excellent thermal insulation and heat preservation capacity owing to the synergistically low thermal conductivity and emissivity. More importantly, the conductive path of the composite established by the three 1D materials greatly improved its EMI shielding property and Joule heating performance at low applied voltage. This work paves the way for rational utilization of the intrinsic properties of 1D materials, as well as provides a promising strategy for designing wearable electromagnetic protection and thermal energy management devices.
基金The authors are grateful for the financial support by the National Natural Science Foundation of China(No.52102055)China Postdoctoral Science Foundation(No.2020M681965)+6 种基金Key Research Program of the Chinese Academy of Sciences(No.ZDRW-CN-2019-3)the Project of the Chinese Academy of Sciences(Nos.XDC07030100,XDA22020602,KFZD-SW-409 and ZDKYYQ20200001)CAS Youth Innovation Promotion Association(No.2020301),Science and Technology Major Project of Ningbo(Nos.2018B10046 and 2016S1002)the Natural Science Foundation of Ningbo(No.2017A610010)Foundation of State Key Laboratory of Solid lubrication(No.LSL-1912)National Key Laboratory of Science and Technology on Advanced Composites in Special Environments(No.6142905192806)the K.C.Wong Education Foundation(No.GJTD-2019-13)。
文摘The integration and miniaturization of chips lead to inevitable overheating and increasing electromagnetic interference (EMI) problems, which threaten the performance, stability, and lifetime of electroniccomponents. Therefore, it is important to improve the heat dissipation and EMI shielding performancein device packaging for the steady operation of electronic products. In recent years, due to its intrinsic superior thermal conductivity, proper electrical conductivity, light-weight, and structural adjustability,graphene has been widely used as high thermal and conductive fillers incorporated in the polymer matrix to improve the thermal conductivity and electrical conductivity of composites. This review concludesthe recent development of graphene/polymer composites by using graphene as fillers to improve thethermal conductivity and EMI shielding effectiveness (EMI SE). The structure of graphene embedded inthe composites varies from zero-dimension (0D), one-dimension (1D) to two-dimensions (2D). Moreover,highly thermally and electrically conductive fillers with different dimensions were also modified on thegraphene to improve the composite performance. Finally, this review also makes prospects for the development trend of graphene/polymer composites with high thermal conductivity and EMI SE in the future.
基金supported by the Provincial Key Research and Development Program of Shandong(Nos.2019JZZY010312 and 2021ZLGX01)New 20 Funded Programs for Universities of Jinan(No.2021GXRC036)Shenzhen municipal special fund for guiding local scientific and technological development(No.China2021Szvup071).
文摘With the rapid development of the electronic industry and wireless communication technology,electromagnetic interference(EMI)or pollution has been increasingly serious.This not only severely endangers the normal operation of electronic equipment but also threatens human health.Therefore,it is urgent to develop high-performance EMI shielding materials.The advent of hydrogel-based materials has given EMI shields a novel option.Hydrogels combined with conductive functional materials have good mechanical flexibility,fatigue durability,and even high stretchability,which are beneficial for a wide range of applications,especially in EMI shielding and some flexible functional devices.Herein,the current progress of hydrogel-based EMI shields was reviewed,in the meanwhile,some novel studies about pore structure design that we believe will help advance the development of hydrogel-based EMI shielding materials were also included.In the outlook,we suggested some promising development directions for the hydrogel-based EMI shields,by which we hope to provide a reference for designing hydrogels with excellent EMI shielding performance and multifunctionalities.
基金New 20 Funded Programs for University of Jinan,Grant/Award Number:2021GXRC036National Key R&D Program of China,Grant/Award Number:2021YFB3502500+1 种基金Qilu Young Scholar Program of Shandong University,Grant/Award Number:31370082163127Provincial Key Research and Development Program of Shandong,Grant/Award Numbers:2019JZZY010312,2021ZLGX01。
文摘Sustainable and renewable nanocellulose attracts more and more attention in various fields due to its high strength-to-weight ratio,small diameter,large aspect ratio,and abundant functional groups.The excellent properties and structural characteristics enabled a great potential of nanocellulose for efficient interactions with functional nanomaterials such as carbon nanotube,graphene,transition metal carbides/nitrides(MXenes),and metal nanoparticles,which is beneficial for preparing high-performance electromagnetic interference(EMI)shields.We review the advances in the nanocelluloseassisted preparation of composite films and aerogels for EMI shielding application.The nanocellulose-based composites are evaluated in terms of their EMI shielding performance and the shielding mechanisms,including conduction,polarization,and multiple reflections are summarized.In addition to the constituent structure and contents,we highlight the significance of the microstructure design in enhancing the EMI shielding performance of the nanocellulose-based EMI shields.Finally,the current challenges and outlook for these fascinating nanocellulose-based EMI shielding composites are discussed.