期刊文献+
共找到941篇文章
< 1 2 48 >
每页显示 20 50 100
Recursive weighted least squares estimation algorithm based on minimum model error principle 被引量:2
1
作者 雷晓云 张志安 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期545-558,共14页
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri... Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness. 展开更多
关键词 Minimum model error Weighted least squares method State estimation Invariant embedding method Nonlinear recursive estimate
下载PDF
Comparative Study of Probabilistic and Least-Squares Methods for Developing Predictive Models
2
作者 Boribo Kikunda Philippe Thierry Nsabimana +2 位作者 Jules Raymond Kala Jeremie Ndikumagenge Longin Ndayisaba 《Open Journal of Applied Sciences》 2024年第7期1775-1787,共13页
This article explores the comparison between the probability method and the least squares method in the design of linear predictive models. It points out that these two approaches have distinct theoretical foundations... This article explores the comparison between the probability method and the least squares method in the design of linear predictive models. It points out that these two approaches have distinct theoretical foundations and can lead to varied or similar results in terms of precision and performance under certain assumptions. The article underlines the importance of comparing these two approaches to choose the one best suited to the context, available data and modeling objectives. 展开更多
关键词 Predictive models Least squares Bayesian estimation Methods
下载PDF
Parameter identification of hysteretic model of rubber-bearing based on sequential nonlinear least-square estimation 被引量:10
3
作者 Yin Qiang Zhou Li Wang Xinming 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期375-383,共9页
In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinea... In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinear hysteretic behavior of RBs in this paper, which has the advantages of being smooth-varying and physically motivated. Further, based on the results from experimental tests performed by using a particular type of RB (GZN 110) under different excitation scenarios, including white noise and several earthquakes, a new system identification method, referred to as the sequential nonlinear least- square estimation (SNLSE), is introduced to identify the model parameters. It is shown that the proposed simplified Bouc- Wen model is capable of describing the nonlinear hysteretic behavior of RBs, and that the SNLSE approach is very effective in identifying the model parameters of RBs. 展开更多
关键词 parameter identification rubber-bearing hysteretic behavior Bouc-Wen model sequential nonlinear least- square estimation
下载PDF
Selection of the Linear Regression Model According to the Parameter Estimation 被引量:31
4
作者 Sun Dao-de Department of Computer, Fuyang Teachers College, Anhui 236032,China 《Wuhan University Journal of Natural Sciences》 EI CAS 2000年第4期400-405,共6页
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula... In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example. 展开更多
关键词 parameter estimation linear regression model selection criterion mean square error
下载PDF
THE SUPERIORITY OF EMPIRICAL BAYES ESTIMATION OF PARAMETERS IN PARTITIONED NORMAL LINEAR MODEL 被引量:4
5
作者 张伟平 韦来生 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期955-962,共8页
In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares... In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion. 展开更多
关键词 Partitioned linear model empirical Bayes estimator least-squares estimator mean square error matrix
下载PDF
Ridge estimation iterative solution of ill-posed mixed additive and multiplicative random error model with equality constraints 被引量:3
6
作者 Leyang Wang Tao Chen 《Geodesy and Geodynamics》 CSCD 2021年第5期336-346,共11页
The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the ... The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the mixed additive and multiplicative random error model with equality constraints and derive the weighted least squares iterative solution of the model. In addition, aiming at the ill-posed problem of the coefficient matrix, we also propose the ridge estimation iterative solution of ill-posed mixed additive and multiplicative random error model with equality constraints based on the principle of ridge estimation method and derive the U-curve method to determine the ridge parameter. The experimental results show that the weighted least squares iterative solution can obtain more reasonable parameter estimation and precision information than existing solutions, verifying the feasibility of applying the equality constraints to the mixed additive and multiplicative random error model. Furthermore, the ridge estimation iterative solution can obtain more accurate parameter estimation and precision information than the weighted least squares iterative solution. 展开更多
关键词 Ill-posed problem Mixed additive and multiplicative random error model Equality constraints Weighted least squares Ridge estimation method U-curve method
下载PDF
Improved cat swarm optimization for parameter estimation of mixed additive and multiplicative random error model 被引量:2
7
作者 Leyang Wang Shuhao Han 《Geodesy and Geodynamics》 EI CSCD 2023年第4期385-391,共7页
To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a deriv... To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models. 展开更多
关键词 Mixed additive and multiplicative random error model Parameter estimation Least squares Cat swarm optimization Powell method
下载PDF
Orthogonal-Least-Squares Forward Selection for Parsimonious Modelling from Data 被引量:1
8
作者 Sheng CHEN 《Engineering(科研)》 2009年第2期55-74,共20页
The objective of modelling from data is not that the model simply fits the training data well. Rather, the goodness of a model is characterized by its generalization capability, interpretability and ease for knowledge... The objective of modelling from data is not that the model simply fits the training data well. Rather, the goodness of a model is characterized by its generalization capability, interpretability and ease for knowledge extraction. All these desired properties depend crucially on the ability to construct appropriate parsimonious models by the modelling process, and a basic principle in practical nonlinear data modelling is the parsimonious principle of ensuring the smallest possible model that explains the training data. There exists a vast amount of works in the area of sparse modelling, and a widely adopted approach is based on the linear-in-the-parameters data modelling that include the radial basis function network, the neurofuzzy network and all the sparse kernel modelling techniques. A well tested strategy for parsimonious modelling from data is the orthogonal least squares (OLS) algorithm for forward selection modelling, which is capable of constructing sparse models that generalise well. This contribution continues this theme and provides a unified framework for sparse modelling from data that includes regression and classification, which belong to supervised learning, and probability density function estimation, which is an unsupervised learning problem. The OLS forward selection method based on the leave-one-out test criteria is presented within this unified data-modelling framework. Examples from regression, classification and density estimation applications are used to illustrate the effectiveness of this generic parsimonious modelling approach from data. 展开更多
关键词 DATA modelLING Regression Classification DENSITY estimation ORTHOGONAL Least squares Algorithm
下载PDF
Bayesian Estimation for the Order of INAR(q)Model 被引量:1
9
作者 MIAO GUAN-HONG WANG DE-HUI 《Communications in Mathematical Research》 CSCD 2016年第4期325-331,共7页
In this paper, we consider the problem of determining the order ofINAR(Q) model on the basis of the Bayesian estimation theory. The Bayesian es-timator for the order is given with respect to a squared-error loss fu... In this paper, we consider the problem of determining the order ofINAR(Q) model on the basis of the Bayesian estimation theory. The Bayesian es-timator for the order is given with respect to a squared-error loss function. The consistency of the estimator is discussed. The results of a simulation study for the estimation method are presented. 展开更多
关键词 INAR(Q) model Bayesian estimation squared-error loss function con-sistency
下载PDF
Choice of estimation of unknown parameter under contaminated error model
10
作者 王志忠 朱建军 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第4期852-856,共5页
The ε -contaminated normal distribution, ψ(Δ ) = (1 - ε )ψ0(Δ ) +εψ1 (Δ ), was considered as error model occurring in practice (ψ = probability function, Δ = observation error). The variances of the L1 (Lea... The ε -contaminated normal distribution, ψ(Δ ) = (1 - ε )ψ0(Δ ) +εψ1 (Δ ), was considered as error model occurring in practice (ψ = probability function, Δ = observation error). The variances of the L1 (Least Absolute Sum) estimation and the L2 (Least Squares) estimation were compared with each other based on their asymptotic distribution. The revised L2 estimation was then derived. The conditions that the L1 estimation is superior to the L2 estimation and that the revised L2 estimation is superior to L1 estimation were discussed. 展开更多
关键词 contaminated model least squares estimation least ABSOLUTE SUM estimation
下载PDF
Parameter Estimation for the NEAR(p) Model
11
作者 赵世舜 朱复康 王德辉 《Northeastern Mathematical Journal》 CSCD 2005年第4期383-386,共4页
As to the acronym NEAR(p), it means “New Exponential Autoregressive Process of order p”. The NEAR(p) model is defined by
关键词 AUTOREGRESSIVE conditional least square estimation EXPONENTIAL maximum quasi-likelihood estimation NEAR(p) model weighted conditional least square estimation
下载PDF
A New Class of Biased Linear Estimators in Deficient-rank Linear Models 被引量:1
12
作者 归庆明 段清堂 +1 位作者 周巧云 郭建锋 《Chinese Quarterly Journal of Mathematics》 CSCD 2001年第1期71-78,共8页
In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es... In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment. 展开更多
关键词 deficient_rank model best linear minimum bias estimator generalized principal components estimator mean squared error condition number
下载PDF
Estimation of the Stress-Strength Reliability for Exponentiated Pareto Distribution Using Median and Ranked Set Sampling Methods 被引量:2
13
作者 Amer Ibrahim Al-Omari Ibrahim M.Almanjahie +1 位作者 Amal S.Hassan Heba F.Nagy 《Computers, Materials & Continua》 SCIE EI 2020年第8期835-857,共23页
In reliability analysis,the stress-strength model is often used to describe the life of a component which has a random strength(X)and is subjected to a random stress(Y).In this paper,we considered the problem of estim... In reliability analysis,the stress-strength model is often used to describe the life of a component which has a random strength(X)and is subjected to a random stress(Y).In this paper,we considered the problem of estimating the reliability𝑅𝑅=P[Y<X]when the distributions of both stress and strength are independent and follow exponentiated Pareto distribution.The maximum likelihood estimator of the stress strength reliability is calculated under simple random sample,ranked set sampling and median ranked set sampling methods.Four different reliability estimators under median ranked set sampling are derived.Two estimators are obtained when both strength and stress have an odd or an even set size.The two other estimators are obtained when the strength has an odd size and the stress has an even set size and vice versa.The performances of the suggested estimators are compared with their competitors under simple random sample via a simulation study.The simulation study revealed that the stress strength reliability estimates based on ranked set sampling and median ranked set sampling are more efficient than their competitors via simple random sample.In general,the stress strength reliability estimates based on median ranked set sampling are smaller than the corresponding estimates under ranked set sampling and simple random sample methods.Keywords:Stress-Strength model,ranked set sampling,median ranked set sampling,maximum likelihood estimation,mean square error.corresponding estimates under ranked set sampling and simple random sample methods. 展开更多
关键词 Stress-Strength model ranked set sampling median ranked set sampling maximum likelihood estimation mean square error
下载PDF
Performance of Existing Biased Estimators and the Respective Predictors in a Misspecified Linear Regression Model 被引量:1
14
作者 Manickavasagar Kayanan Pushpakanthie Wijekoon 《Open Journal of Statistics》 2017年第5期876-900,共25页
In this paper, the performance of existing biased estimators (Ridge Estimator (RE), Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component Regression Esti... In this paper, the performance of existing biased estimators (Ridge Estimator (RE), Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component Regression Estimator (PCRE), r-k class estimator and r-d class estimator) and the respective predictors were considered in a misspecified linear regression model when there exists multicollinearity among explanatory variables. A generalized form was used to compare these estimators and predictors in the mean square error sense. Further, theoretical findings were established using mean square error matrix and scalar mean square error. Finally, a numerical example and a Monte Carlo simulation study were done to illustrate the theoretical findings. The simulation study revealed that LE and RE outperform the other estimators when weak multicollinearity exists, and RE, r-k class and r-d class estimators outperform the other estimators when moderated and high multicollinearity exist for certain values of shrinkage parameters, respectively. The predictors based on the LE and RE are always superior to the other predictors for certain values of shrinkage parameters. 展开更多
关键词 Misspecified Regression model GENERALIZED Biased estimator GENERALIZED PREDICTOR Mean squarE ERROR Matrix SCALAR Mean squarE ERROR
下载PDF
LIMITING BEHAVIOR OF RECURSIVE M-ESTIMATORS IN MULTIVARIATE LINEAR REGRESSION MODELS AND THEIR ASYMPTOTIC EFFICIENCIES
15
作者 缪柏其 吴月华 刘东海 《Acta Mathematica Scientia》 SCIE CSCD 2010年第1期319-329,共11页
Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursi... Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied. 展开更多
关键词 asymptotic efficiency asymptotic normality asymptotic relative efficiency least absolute deviation least squares M-estimation multivariate linear optimal estimator reeursive algorithm regression coefficients robust estimation regression model
下载PDF
Nonlinear Least Squares Estimation of Log-ACD Models 被引量:1
16
作者 Zhao CHEN Wei LIU +2 位作者 Christina Dan WANG Wu-qing WU Yao-hua WU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2018年第3期516-533,共18页
This paper studies a nonlinear least squares estimation method for the logarithmic autoregressive conditional duration(Log-ACD) model. We establish the strong consistency and asymptotic normality for our estimator u... This paper studies a nonlinear least squares estimation method for the logarithmic autoregressive conditional duration(Log-ACD) model. We establish the strong consistency and asymptotic normality for our estimator under weak moment conditions suitable for applications involving heavy-tailed distributions. We also discuss inference for the Log-ACD model and Log-ACD models with exogenous variables. Our results can be easily translated to study Log-GARCH models. Both simulation study and real data analysis are conducted to show the usefulness of our results. 展开更多
关键词 Log-ACD model nonlinear least squares estimation log-garch model heavy-tail
原文传递
THE COMPRESSION LS ESTIMATE OF REGRESSION COEFFICIENT IN MULTIVARIATE LINEAR MODEL
17
作者 陈世基 曾志斌 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1994年第4期379-388,共10页
In this paper, compression LS estimate (k) of the regression coefficient B isconsidered when the design matrix present ill-condition in multivariate linear model.The MSE (mean square error)of the estimate(k)=Ve... In this paper, compression LS estimate (k) of the regression coefficient B isconsidered when the design matrix present ill-condition in multivariate linear model.The MSE (mean square error)of the estimate(k)=Vec( (k))is less than theMSE of LS estimate β ̄* of the regression coefficient β= Vec(B) by choosing the pa-rameter k. Admissibility , numerical stability and relative efficiency of (k)are proved. The method of determining k value for practical use is also suggested 展开更多
关键词 multivariate linear model. least square estimate compression LSestimate mean square error
下载PDF
Generalized Penalized Least Squares and Its Statistical Characteristics
18
作者 DING Shijun TAO Benzao 《Geo-Spatial Information Science》 2006年第4期255-259,共5页
The solution properties of semiparametric model are analyzed, especially that penalized least squares for semiparametric model will be invalid when the matrix B^TPB is ill-posed or singular. According to the principle... The solution properties of semiparametric model are analyzed, especially that penalized least squares for semiparametric model will be invalid when the matrix B^TPB is ill-posed or singular. According to the principle of ridge estimate for linear parametric model, generalized penalized least squares for semiparametric model are put forward, and some formulae and statistical properties of estimates are derived. Finally according to simulation examples some helpful conclusions are drawn. 展开更多
关键词 semiparametric model penalized least squares generalized penalized least squares statistical property ill-posed matrix ridge estimate
下载PDF
Strong Consistency of Estimators of a Semiparametric Regression Model under Fixed Design
19
作者 TIAN Ping XUE Liu-gen 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第2期202-209,共8页
In this paper, we consider the following semipaxametric regression model under fixed design: yi = xi′β+g(xi)+ei. The estimators of β, g(·) and σ^2 axe obtained by using the least squares and usual nonp... In this paper, we consider the following semipaxametric regression model under fixed design: yi = xi′β+g(xi)+ei. The estimators of β, g(·) and σ^2 axe obtained by using the least squares and usual nonparametric weight function method and their strong consistency is proved under the suitable conditions. 展开更多
关键词 semiparametric regression model least square estimation weight function strong consistency
下载PDF
Comparison of Two Time Series Decomposition Methods: Least Squares and Buys-Ballot Methods
20
作者 I. S. Iwueze E. C. Nwogu +1 位作者 V. U. Nlebedim J. C. Imoh 《Open Journal of Statistics》 2016年第6期1123-1137,共15页
This paper discusses comparison of two time series decomposition methods: The Least Squares Estimation (LSE) and Buys-Ballot Estimation (BBE) methods. As noted by Iwueze and Nwogu (2014), there exists a research gap f... This paper discusses comparison of two time series decomposition methods: The Least Squares Estimation (LSE) and Buys-Ballot Estimation (BBE) methods. As noted by Iwueze and Nwogu (2014), there exists a research gap for the choice of appropriate model for decomposition and detection of presence of seasonal effect in a series model. Estimates of trend parameters and seasonal indices are all that are needed to fill the research gap. However, these estimates are obtainable through the Least Squares Estimation (LSE) and Buys-Ballot Estimation (BBE) methods. Hence, there is need to compare estimates of the two methods and recommend. The comparison of the two methods is done using the Accuracy Measures (Mean Error (ME)), Mean Square Error (MSE), the Mean Absolute Error (MAE), and the Mean Absolute Percentage Error (MAPE). The results from simulated series show that for the additive model;the summary statistics (ME, MSE and MAE) for the two estimation methods and for all the selected trending curves are equal in all the simulations both in magnitude and direction. For the multiplicative model, results show that when a series is dominated by trend, the estimates of the parameters by both methods become less precise and differ more widely from each other. However, if conditions for successful transformation (using the logarithmic transform in linearizing the multiplicative model to additive model) are met, both of them give similar results. 展开更多
关键词 Decomposition models Least squares estimates Buys-Ballot estimates Accuracy Measures Successful Transformation Trending Curves
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部