肺结节在CT(Computed Tomography)图像中所占像素较少,增加了检测难度。针对肺结节小目标检测问题,文中提出了融合坐标注意力机制的YOLOv3(You Only Look Once version 3)肺结节检测算法。主干网络采用改进YOLOv3,减少残差块数量并引入...肺结节在CT(Computed Tomography)图像中所占像素较少,增加了检测难度。针对肺结节小目标检测问题,文中提出了融合坐标注意力机制的YOLOv3(You Only Look Once version 3)肺结节检测算法。主干网络采用改进YOLOv3,减少残差块数量并引入扩张卷积模块,并可从目标周围感知上下文信息。在特征利用部分引入坐标注意力机制,捕捉肺结节位置、方向和跨通道信息,精确定位肺结节。改进YOLOv3的损失函数,将边界框建模成高斯分布,利用Wasserstein距离来计算两个分布之间的相似度代替IoU(Intersection over Union)度量,提升模型对目标尺度的敏感性。在LUNA16数据集上的结果显示,肺结节检测的平均精度为89.96%,敏感性为95.37%,与主流目标检测算法相比,精度平均提升了11.33%,敏感性平均提升了9.03%。展开更多
在互联网技术日趋成熟的今天,广告的点击率(click-through rate,CTR)预测得到越来越多的关注。在特定的商业环境下,广告CTR预测模型的改进可以带来巨大的经济效益。然而特征的多样性和复杂性使得传统的预测模型难以发现海量特征中的重...在互联网技术日趋成熟的今天,广告的点击率(click-through rate,CTR)预测得到越来越多的关注。在特定的商业环境下,广告CTR预测模型的改进可以带来巨大的经济效益。然而特征的多样性和复杂性使得传统的预测模型难以发现海量特征中的重要特征。针对上述问题,提出了基于压缩激励网络的注意力因子分解机的点击率预测模型(squeeze and excitation network based attentional factorization machines model for click-through rate prediction,SEAFM),SEAFM模型通过压缩和激励网络来动态学习特征的重要性,通过注意力网络来学习特征交互的权重,通过深度神经网络(deep neural network,DNN)模块来隐式建模高阶特征交互。实验结果显示,SEAFM模型比现有相关模型具有更好的性能。展开更多
文摘肺结节在CT(Computed Tomography)图像中所占像素较少,增加了检测难度。针对肺结节小目标检测问题,文中提出了融合坐标注意力机制的YOLOv3(You Only Look Once version 3)肺结节检测算法。主干网络采用改进YOLOv3,减少残差块数量并引入扩张卷积模块,并可从目标周围感知上下文信息。在特征利用部分引入坐标注意力机制,捕捉肺结节位置、方向和跨通道信息,精确定位肺结节。改进YOLOv3的损失函数,将边界框建模成高斯分布,利用Wasserstein距离来计算两个分布之间的相似度代替IoU(Intersection over Union)度量,提升模型对目标尺度的敏感性。在LUNA16数据集上的结果显示,肺结节检测的平均精度为89.96%,敏感性为95.37%,与主流目标检测算法相比,精度平均提升了11.33%,敏感性平均提升了9.03%。
文摘在互联网技术日趋成熟的今天,广告的点击率(click-through rate,CTR)预测得到越来越多的关注。在特定的商业环境下,广告CTR预测模型的改进可以带来巨大的经济效益。然而特征的多样性和复杂性使得传统的预测模型难以发现海量特征中的重要特征。针对上述问题,提出了基于压缩激励网络的注意力因子分解机的点击率预测模型(squeeze and excitation network based attentional factorization machines model for click-through rate prediction,SEAFM),SEAFM模型通过压缩和激励网络来动态学习特征的重要性,通过注意力网络来学习特征交互的权重,通过深度神经网络(deep neural network,DNN)模块来隐式建模高阶特征交互。实验结果显示,SEAFM模型比现有相关模型具有更好的性能。