期刊文献+
共找到101篇文章
< 1 2 6 >
每页显示 20 50 100
基于SMOTE-IKPCA-SeNet深度迁移学习的小批量生产质量预测研究 被引量:1
1
作者 杨剑锋 崔少红 +1 位作者 段家琦 王宁 《工业工程》 2024年第2期98-106,157,共10页
随着智能制造技术的发展和客户个性化需求的增加,多品种小批量生产方式逐渐成为制造业的主流。面向大批量生产、以统计过程控制为核心的质量管理方式并不适用于小批量生产。针对复杂生产过程存在参数多、非线性和交互作用的问题,提出利... 随着智能制造技术的发展和客户个性化需求的增加,多品种小批量生产方式逐渐成为制造业的主流。面向大批量生产、以统计过程控制为核心的质量管理方式并不适用于小批量生产。针对复杂生产过程存在参数多、非线性和交互作用的问题,提出利用深度迁移学习的方式将历史生产数据作为源域迁移至小样本目标产品数据进行质量预测。首先,通过合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)和改进的核主成分分析(improved kernel principal component analysis,IKPCA)算法筛选源域和目标域的可迁移特征,这不仅兼顾了特征重要性和可迁移性,还减少了“负迁移”,提高了模型泛化能力;然后,采用结合通道注意力机制的卷积神经网络SeNet构建基于深度迁移学习的质量预测模型。仿真结果表明,随着目标域样本的增加,所提方法的预测准确性明显优于广泛采用的支持向量机建模方法。同时,所提可迁移特征筛选方法显著提高了深度迁移学习的质量预测效果,为复杂的小批量生产过程质量保证提供了新方法。 展开更多
关键词 小批量生产质量预测 深度迁移学习 SMOTE IKPCA senet
下载PDF
融合残差SENet的毫米波大规模MIMO信道估计
2
作者 刘庆利 杨国强 张振亚 《电讯技术》 北大核心 2024年第4期512-519,共8页
在户外光线追踪场景下,针对毫米波大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统受户外环境噪声干扰导致估计精度低的问题,提出了一种融合残差挤压激励网络(Squeeze-and-Excitation Network,SENet)的条件生成对抗网络... 在户外光线追踪场景下,针对毫米波大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统受户外环境噪声干扰导致估计精度低的问题,提出了一种融合残差挤压激励网络(Squeeze-and-Excitation Network,SENet)的条件生成对抗网络的信道估计方法。该方法采用条件生成对抗网络将低分辨率接收信号重建为高分辨率的原始信号完成信道估计,同时在生成器网络中引入SENet网络模块来抑制户外场景下显著性噪声干扰,提高估计精度;最后将残差网络中的残差块添加到SENet的放缩操作后,提高条件生成对抗网络的收敛速度。仿真结果表明,相较于正交匹配追踪算法、卷积神经网络、去噪卷积神经网络和条件生成对抗网络算法,所提方法在户外噪声环境下估计精度平均提高了约2.2 dB,且在高噪声强度下估计精度的提高更为显著。 展开更多
关键词 毫米波大规模MIMO 信道估计 条件生成对抗网络(CGAN) 残差挤压激励网络(senet)
下载PDF
基于Squeeze-Excitation的音频场景分类研究 被引量:1
3
作者 乔高杰 廖闻剑 《电子设计工程》 2021年第19期179-183,188,共6页
目前音频场景分类任务中主要使用对数梅尔谱图作为特征,大多数研究人员选择对每个通道的特征信息进行处理,鲜有研究考虑特征通道间信息的问题。文中将图像分类中有着较好效果的Squeeze-Excitation(SE)模块引入到音频场景分类任务中,以... 目前音频场景分类任务中主要使用对数梅尔谱图作为特征,大多数研究人员选择对每个通道的特征信息进行处理,鲜有研究考虑特征通道间信息的问题。文中将图像分类中有着较好效果的Squeeze-Excitation(SE)模块引入到音频场景分类任务中,以解决未考虑特征通道信息的问题。在基础的CNN网络结构中添加SE模块可以较好地考虑特征通道间的信息,进而提高网络的表达能力,同时还探究了SE模块添加的位置与数量对音频场景分类效果的影响。实验结果证明,添加SE模块能够提高场景分类的准确率,相比于基线系统分类准确率提高了1.1%;只有当SE模块添加在特征通道数比较多的卷积块之后才能够达到比较好的效果,而增加SE模块的数量相较于基线系统分类准确率提高不明显,为0.3%。 展开更多
关键词 音频场景分类 squeeze-excitation DCASE2019 卷积神经网络
下载PDF
基于门控卷积和SENet的双判别生成对抗网络图像修复模型 被引量:3
4
作者 傅继彬 曹玉笠 《计算机应用》 CSCD 北大核心 2023年第S01期212-216,共5页
针对现有模型修复带有随机不规则掩码且语义内容复杂的图片时细节不够真实这一问题,提出了一种基于门控卷积和SENet的双判别生成对抗网络图像修复模型。首先,将破损图片掩码输入由若干门控卷积堆叠成的粗网络中,在上采样时添加通道注意... 针对现有模型修复带有随机不规则掩码且语义内容复杂的图片时细节不够真实这一问题,提出了一种基于门控卷积和SENet的双判别生成对抗网络图像修复模型。首先,将破损图片掩码输入由若干门控卷积堆叠成的粗网络中,在上采样时添加通道注意力(SE),结合L1重建损失,得到初步修复图;然后,将初步修复图输入精细网络,精细网络由若干门控卷积块和通道注意力块构成,结合重构损失、感知损失和对抗损失完善重要特征和细节,将破损图像的完好区域覆盖到精细网络的修复图上,得到完成修复的图片;最后,使用双判别网络结构进行训练,使精细网络的输出与完成修复的图片更加真实。在celebA数据集上进行实验,所提模型对带有大面积不规则掩码图片的修复结果在峰值信噪比(PSNR)上达到了27.39 dB,相较于部分卷积提升了6.74%,在结构相似性(SSIM)上达到了0.9216,较部分卷积提升了2.95%。实验结果表明,引入通道注意力和双判别结构有助于提升图像修复的细节。 展开更多
关键词 门控卷积 双判别器 生成对抗网络 图像修复 通道注意力
下载PDF
基于多粒度时间卷积网络的超短期风功率预测
5
作者 江国乾 徐向东 +3 位作者 白佳荣 何群 谢平 单伟 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期104-111,共8页
针对传统风功率预测方法通常基于固定时间粒进行研究,但该类方法往往忽略了其他时间粒度对风功率的影响的问题,提出一种基于多粒度时间卷积网络(MGTCN)的超短期风功率预测方法,使用时间卷积网络来挖掘多粒度视角下的风力机数据特征,并... 针对传统风功率预测方法通常基于固定时间粒进行研究,但该类方法往往忽略了其他时间粒度对风功率的影响的问题,提出一种基于多粒度时间卷积网络(MGTCN)的超短期风功率预测方法,使用时间卷积网络来挖掘多粒度视角下的风力机数据特征,并设计多粒度特征融合模块来增强模型的鲁棒性,提高风功率预测精度。首先,利用随机森林算法(RF)得到与输出功率相关性较强的部分特征数据;然后,对筛选后的特征数据进行多粒度划分,通过时间卷积网络(TCN)提取各个粒度的独立特征。最后,使用挤压激励网络(SENet)对不同粒度特征进行自适应加权融合,得到最终预测值。采用中国某风场数据进行算例分析,结果表明相较于其他方法,所提方法在24步预测任务和6步预测任务上取得了最佳的预测性能,具有较高的准确性和稳定性。在24步预测任务上归一化均方根误差、归一化平均绝对值误差和决定系数指标分别为0.152、0.108和0.7214,在6步预测任务上各指标分别为0.1027,0.0683和0.8717。 展开更多
关键词 风功率 预测 随机森林 多粒度计算 时间卷积网络 挤压激励网络
下载PDF
基于改进ResNet的示功图分类算法研究
6
作者 李建平 董永杨 宋明会 《计算机技术与发展》 2024年第8期197-201,共5页
示功图是反映抽油机井工作状态的重要图示,通过分析示功图的闭合曲线形状,可以得出抽油机井的具体工作状态,从而可以判断出抽油机井是否发生故障以及具体的故障类型。随着深度学习的发展,基于深度神经网络的示功图分类也逐渐应用到了抽... 示功图是反映抽油机井工作状态的重要图示,通过分析示功图的闭合曲线形状,可以得出抽油机井的具体工作状态,从而可以判断出抽油机井是否发生故障以及具体的故障类型。随着深度学习的发展,基于深度神经网络的示功图分类也逐渐应用到了抽油机井工况检测当中。该文提出了基于改进ResNet的示功图分类算法,通过优化残差结构和引入SE子结构等措施,提高了分类准确性和鲁棒性。改进的残差结构嵌入了SE子结构,对输入特征进行降维的同时也减小了参数的数量,在降低计算量的同时也添加了更多非线性因素,通过不断增加有效特征的权重,不断减小无效特征的权重,进而完成了特征重标定,不仅起到加速网络收敛的作用,也使模型更加轻量化,从而提高了模型的性能。相较于其它模型,改进的ResNet模型可以更好地适应示功图分类任务,分类效果更好。实验结果表明,基于改进ResNet的示功图分类算法在精确率、召回率和F1值上均优于其它示功图分类算法。该研究为抽油机井工况检测系统提供了更好的理论支持。 展开更多
关键词 抽油机井 示功图 深度学习 ResNet SE子结构
下载PDF
基于双阶段特征解耦网络的单幅图像去雨方法
7
作者 汤红忠 熊珮全 +2 位作者 王蔚 王晒雅 陈磊 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第2期273-282,共10页
针对现有的单幅图像去雨方法无法有效地平衡背景图像细节恢复与有雨分量去除问题,提出一种基于双阶段特征解耦网络的单幅图像去雨方法,采用渐进式的学习方式从粗到细分阶段进行单幅图像去雨.首先构建压缩激励残差模块,实现背景图像与有... 针对现有的单幅图像去雨方法无法有效地平衡背景图像细节恢复与有雨分量去除问题,提出一种基于双阶段特征解耦网络的单幅图像去雨方法,采用渐进式的学习方式从粗到细分阶段进行单幅图像去雨.首先构建压缩激励残差模块,实现背景图像与有雨分量的初步分离;然后设计全局特征融合模块,其中特别引入特征解耦模块分离有雨分量和背景图像的特征,实现细粒度的图像去雨;最后利用重构损失、结构相似损失、边缘感知损失和纹理一致性损失构成的复合损失函数训练网络,实现高质量的无雨图像重构.实验结果表明,在Test100合成雨图数据集上,所提方法峰值信噪比为25.57dB,结构相似性为0.89;在100幅真实雨图上,所提方法的自然图像质量评估器为3.53,无参考图像空间质量评估器为20.16;在去雨后的RefineNet目标分割任务中,平均交并比为29.41%,平均像素精度为70.06%;视觉效果上,该方法能保留更多的背景图像特征,有效地辅助下游的目标分割任务的开展. 展开更多
关键词 特征解耦网络 压缩激励残差模块 全局特征融合模块 复合损失函数 单幅图像去雨
下载PDF
基于网络流量时空特征和自适应加权系数的异常流量检测方法 被引量:1
8
作者 顾伟 行鸿彦 侯天浩 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第6期2647-2654,共8页
针对传统异常流量检测模型对流量数据时空特性利用率较低从而导致检测模型性能较差的问题,该文提出一种基于融合卷积神经网络(CNN)、多头挤压激励机制(MSE)和双向长短期记忆(BiLSTM)网络的异常流量检测方法MSECNN-BiLSTM。利用1维CNN挖... 针对传统异常流量检测模型对流量数据时空特性利用率较低从而导致检测模型性能较差的问题,该文提出一种基于融合卷积神经网络(CNN)、多头挤压激励机制(MSE)和双向长短期记忆(BiLSTM)网络的异常流量检测方法MSECNN-BiLSTM。利用1维CNN挖掘空间尺度下的异常流量特征,并引入MSE,多角度自适应特征加权,强化模型全局特征的关联能力。将网络流量的特征输入BiLSTM,捕捉流量数据的时序依赖性,进一步建立网络流量在时间尺度上的关系模型。利用softmax分类器进行预测分类,实验结果验证了所提模型在异常流量检测领域的有效性。 展开更多
关键词 异常流量检测 卷积神经网络 长短期记忆网络 挤压激励机制
下载PDF
一种基于全卷积神经网络的空中目标战术意图识别模型
9
作者 李乐民 宋亚飞 +1 位作者 王鹏 王科 《空军工程大学学报》 CSCD 北大核心 2024年第5期98-106,共9页
针对现有空中目标识别方法敏捷性和可靠度不够高的问题,研究设计了一种深度学习模型MLSTM-FCN,结合了全卷积神经网络、循环神经网络和压缩与激励模块的优点。全卷积网络能够提取空战数据中的复杂局部特征,长短记忆神经网络可以捕捉空战... 针对现有空中目标识别方法敏捷性和可靠度不够高的问题,研究设计了一种深度学习模型MLSTM-FCN,结合了全卷积神经网络、循环神经网络和压缩与激励模块的优点。全卷积网络能够提取空战数据中的复杂局部特征,长短记忆神经网络可以捕捉空战意图数据的时序特征。通过消融实验和对比实验结果表明,MLSTM-FCN模型在意图识别准确率、反应速度和抗干扰能力方面明显优于现有的空中目标意图识别模型,取得了sota的结果,为指挥员在进行空中作战决策时提供更有效的依据。 展开更多
关键词 意图识别 空中目标 深度学习 全卷积网络 长短记忆神经网络 压缩与激励模块
下载PDF
融合坐标注意力机制的YOLOv3肺结节检测算法
10
作者 王新宇 赵静文 +2 位作者 刘翔 石蕴玉 佘云浪 《电子科技》 2024年第6期1-7,共7页
肺结节在CT(Computed Tomography)图像中所占像素较少,增加了检测难度。针对肺结节小目标检测问题,文中提出了融合坐标注意力机制的YOLOv3(You Only Look Once version 3)肺结节检测算法。主干网络采用改进YOLOv3,减少残差块数量并引入... 肺结节在CT(Computed Tomography)图像中所占像素较少,增加了检测难度。针对肺结节小目标检测问题,文中提出了融合坐标注意力机制的YOLOv3(You Only Look Once version 3)肺结节检测算法。主干网络采用改进YOLOv3,减少残差块数量并引入扩张卷积模块,并可从目标周围感知上下文信息。在特征利用部分引入坐标注意力机制,捕捉肺结节位置、方向和跨通道信息,精确定位肺结节。改进YOLOv3的损失函数,将边界框建模成高斯分布,利用Wasserstein距离来计算两个分布之间的相似度代替IoU(Intersection over Union)度量,提升模型对目标尺度的敏感性。在LUNA16数据集上的结果显示,肺结节检测的平均精度为89.96%,敏感性为95.37%,与主流目标检测算法相比,精度平均提升了11.33%,敏感性平均提升了9.03%。 展开更多
关键词 肺结节 YOLOv3 扩张卷积 坐标注意力 小目标检测 压缩激发网络 CBAM NWD
下载PDF
基于Conformer的端到端语音识别方法
11
作者 胡从刚 申艺翔 +1 位作者 孙永奇 赵思聪 《计算机应用研究》 CSCD 北大核心 2024年第7期2018-2024,共7页
针对Conformer编码器的声学输入网络对FBank语音信息提取不足和通道特征信息缺失问题,提出一种RepVGG-SE-Conformer的端到端语音识别方法。首先,利用RepVGG的多分支结构,增强模型的语音信息提取能力,而在模型推理时通过结构重参数化将... 针对Conformer编码器的声学输入网络对FBank语音信息提取不足和通道特征信息缺失问题,提出一种RepVGG-SE-Conformer的端到端语音识别方法。首先,利用RepVGG的多分支结构,增强模型的语音信息提取能力,而在模型推理时通过结构重参数化将多分支融合为单分支,以降低计算复杂度、加快模型推理速度。然后,利用基于压缩和激励网络的通道注意力机制弥补缺失的通道特征信息,以提高语音识别准确率。最后,在公开数据集Aishell-1上的实验结果表明:相较于Conformer,所提出方法的字错误率降低了10.67%,验证了方法的先进性。此外,RepVGG-SE声学输入网络能够有效提高多种Transformer变体的端到端语音识别模型的整体性能,具有很好的泛化能力。 展开更多
关键词 语音识别 CONFORMER RepVGG 压缩和激励网络
下载PDF
基于YOLOv5s改进模型的堆叠螺栓抓取研究
12
作者 李凤洋 邱益 +3 位作者 陈江义 杨云峰 窦晓亮 郝树涛 《机电工程》 CAS 北大核心 2024年第8期1500-1507,共8页
在当前工业的螺栓生产过程中,堆叠螺栓的分拣工作依然需要人工完成,不仅工作效率低,而且会导致大量人力资源的浪费。针对这一问题,对YOLOv5网络模型进行了改进,提出了SE_YOLOv5网络模型。首先,在原网络的Neck部分删除了P′1特征层,减小... 在当前工业的螺栓生产过程中,堆叠螺栓的分拣工作依然需要人工完成,不仅工作效率低,而且会导致大量人力资源的浪费。针对这一问题,对YOLOv5网络模型进行了改进,提出了SE_YOLOv5网络模型。首先,在原网络的Neck部分删除了P′1特征层,减小了网络对浅层信息的提取,在不影响对大尺寸目标检测的前提下,提高了网络检测的实时性;然后,改进了Backbone模块,通过添加压缩与激励(SE)注意力机制,使网络更高效地聚焦于图像中的重要部分,增强了网络对堆叠螺栓检测的准确性;最后,提出了检测框重叠最小法,减少了抓取时夹爪与非目标螺栓的碰撞,并对螺栓检测框进行了抓取点位姿优化,提高了抓取的成功率。研究结果表明:SE_YOLOv5网络对堆叠螺栓检测的平均精度为86.5%,平均速度为13.02 FPS;相比于原YOLOv5s网络模型,SE_YOLOv5网络在检测精度上提升了1.2%,在检测速度上提升了2.71 FPS;相比于其他检测模型,SE_YOLOv5也具有更高的检测精度和检测速度。抓取结果证明,该模型能用于有效地指导机械臂进行螺栓抓取操作。 展开更多
关键词 堆叠螺栓分拣 SE_YOLOv5网络模型 压缩与激励注意力机制 重叠最小法 抓取操作 抓取点位姿优化
下载PDF
基于脑电通道注意力机制的驾驶行为识别研究
13
作者 赵朔 奇格奇 +1 位作者 李培豪 关伟 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第4期283-291,共9页
脑电信号以其高时间分辨率等优点成为识别驾驶员认知状态和评估驾驶性能的重要工具。以往研究中,基于脑电识别驾驶行为往往局限于异常驾驶状态,例如,疲劳检测和分心驾驶等,忽略了常规驾驶场景。本文以常规驾驶行为作为研究对象,通过驾... 脑电信号以其高时间分辨率等优点成为识别驾驶员认知状态和评估驾驶性能的重要工具。以往研究中,基于脑电识别驾驶行为往往局限于异常驾驶状态,例如,疲劳检测和分心驾驶等,忽略了常规驾驶场景。本文以常规驾驶行为作为研究对象,通过驾驶模拟实验同步采集驾驶员在执行加速、减速和转向行为时的驾驶数据和脑电数据,构建基于压缩—激励模块的通道注意力—可分离卷积神经网络,对驾驶员上述驾驶行为进行模式识别,并优化选择跨个体脑电信号通道。结果表明,本文模型在3类驾驶行为识别的准确率达到82%,且在保证预测精度的情况下,将通道数量降低了70%。通过消融实验以及与其他基准模型的对比证明了模型的有效性。对最优通道组合的头皮拓扑位置分析发现,大脑额区和枕区与常规驾驶行为最为相关。研究结果可为从认知角度理解驾驶行为及类脑驾驶决策提供方法依据。 展开更多
关键词 智能交通 驾驶行为识别 压缩—激励网络 脑电通道优化
下载PDF
基于改进残差网络的拉丝机减速箱故障诊断
14
作者 邹知成 万昌江 汝欣 《软件工程》 2024年第3期36-41,共6页
减速箱对拉丝辊的转速固定有重要作用,由于拉丝设备结构紧密,内部零件的运行状态不易于观察,因此减速箱轮齿故障导致的转速配比异常很难被及时发现,针对拉丝机减速箱存在的故障诊断环节缺失问题,提出一种遗传算法与优化注意力模块改进... 减速箱对拉丝辊的转速固定有重要作用,由于拉丝设备结构紧密,内部零件的运行状态不易于观察,因此减速箱轮齿故障导致的转速配比异常很难被及时发现,针对拉丝机减速箱存在的故障诊断环节缺失问题,提出一种遗传算法与优化注意力模块改进的残差网络的故障诊断方法。首先,通过小波包分解与带通滤波的混合方法清洗数据,依照生产车间实际情况提出综合评价指标,并按照指标需求选择小波包分解层数;其次,针对残差网络与注意力模块进行改进;最后,将经过连通域分析与二值化后的特征图送入改进后的模型进行诊断。结果表明,该方法的诊断准确率比注意力-残差网络模型(Squeeze-and-Excitation-ResNet,SE-ResNet)提升了7.32%,比卷积神经网络-极限学习机模型(Convolutional Neural Network-Extreme Learning Machine,CNN-ELM)提升了8.81%,针对注意力模块(Squeeze-and-Excitation Module,SE)的改进将模型的单次诊断时间在原来的基础上缩短0.92 s,对塑编拉丝车间中减速箱的维护具有较大的实用价值。 展开更多
关键词 故障诊断 深度学习 遗传算法 挤压-激励模块 拉丝机 残差网络
下载PDF
基于生成对抗网络的动漫风格迁移
15
作者 游松 林国军 +2 位作者 兰江海 周旭 廖振 《四川轻化工大学学报(自然科学版)》 CAS 2024年第5期87-93,共7页
针对目前生成动画图像质量较低、内容失真、视觉效果有待进一步提升等问题,本文在Generative Adversarial Networks for Photo Cartoonization(CartoonGAN)网络的基础上提出了一种动漫风格迁移的网络模型。首先通过引入预训练模型ResNet... 针对目前生成动画图像质量较低、内容失真、视觉效果有待进一步提升等问题,本文在Generative Adversarial Networks for Photo Cartoonization(CartoonGAN)网络的基础上提出了一种动漫风格迁移的网络模型。首先通过引入预训练模型ResNet-101对内容损失函数进行训练,加快训练速度的同时保证真实图片内容的完整性;然后在生成器模块加入激励挤压模块(SE-Block),实现在特征提取中保留空间特征和通道特征,使得生成的图片更易被判别器区分,从而更好地训练判别器。最后,进行了定性比较和定量分析,结果表明本文所提算法能够有效提升训练速度、提高漫画图像生成质量和增强图像的抽象感,且IS、FID的得分分别为11.2和86。 展开更多
关键词 动漫风格 预训练 CartoonGAN 激励挤压模块 残差网络
下载PDF
基于注意力机制和卷积神经网络的网络安全感知预测
16
作者 张飞 《佳木斯大学学报(自然科学版)》 CAS 2024年第9期129-132,共4页
为了提高网络安全防御效果,注意力机制和卷积神经网络成为研究的热点,但传统方案可能带来模型过拟合、计算和内存开销较大且缺乏空间上下文关系建模的问题。针对上述问题,研究基于注意力机制和卷积神经网络的网络安全感知预测方法,通过... 为了提高网络安全防御效果,注意力机制和卷积神经网络成为研究的热点,但传统方案可能带来模型过拟合、计算和内存开销较大且缺乏空间上下文关系建模的问题。针对上述问题,研究基于注意力机制和卷积神经网络的网络安全感知预测方法,通过加深网络结构、添加dropout层、数据归一化、数据融合四个步骤的改进,最终得到改进挤压与激励网络方案。实验结果表明,该方案收敛速度较快,在65轮迭代后收敛,最终准确率收敛于97.3%。在融合五条数据的情况下,准确率达到最高为97.5%,说明研究建立的网络安全感知预测模型具有较高的准确率以及强大的泛化能力。 展开更多
关键词 注意力机制 卷积神经网络 网络安全感知预测 挤压与激励网络
下载PDF
嵌入改进SENet的卷积神经网络连续血压预测 被引量:5
17
作者 常昊 陈晓雷 +2 位作者 张爱华 李策 林冬梅 《计算机工程与应用》 CSCD 北大核心 2021年第7期130-135,共6页
提出了基于改进SENet卷积神经网络和自学习参数滤波器的连续血压预测方法。实验结果表明,改进SENet可以有效增加简单卷积神经网络对时序数据的预测能力,在卷积层数为二层、三层和四层时比简单卷积神经网络预测精度提升了34.8%、23.5%和3... 提出了基于改进SENet卷积神经网络和自学习参数滤波器的连续血压预测方法。实验结果表明,改进SENet可以有效增加简单卷积神经网络对时序数据的预测能力,在卷积层数为二层、三层和四层时比简单卷积神经网络预测精度提升了34.8%、23.5%和36.0%,在此基础上利用自学习参数滤波器消除血压预测波形中的毛刺,最终得到平滑的连续血压预测结果。 展开更多
关键词 卷积神经网络 senet 血压预测 脉搏信息
下载PDF
基于压缩激励网络的注意力因子分解机的点击率预测模型
18
作者 梅文凯 肖迎元 《天津理工大学学报》 2024年第2期7-12,共6页
在互联网技术日趋成熟的今天,广告的点击率(click-through rate,CTR)预测得到越来越多的关注。在特定的商业环境下,广告CTR预测模型的改进可以带来巨大的经济效益。然而特征的多样性和复杂性使得传统的预测模型难以发现海量特征中的重... 在互联网技术日趋成熟的今天,广告的点击率(click-through rate,CTR)预测得到越来越多的关注。在特定的商业环境下,广告CTR预测模型的改进可以带来巨大的经济效益。然而特征的多样性和复杂性使得传统的预测模型难以发现海量特征中的重要特征。针对上述问题,提出了基于压缩激励网络的注意力因子分解机的点击率预测模型(squeeze and excitation network based attentional factorization machines model for click-through rate prediction,SEAFM),SEAFM模型通过压缩和激励网络来动态学习特征的重要性,通过注意力网络来学习特征交互的权重,通过深度神经网络(deep neural network,DNN)模块来隐式建模高阶特征交互。实验结果显示,SEAFM模型比现有相关模型具有更好的性能。 展开更多
关键词 点击率预测 注意力机制 压缩和激励网络 特征交互
下载PDF
基于全局注意力机制的Robust-PointPillars三维目标检测
19
作者 王盈丰 吴俭 +2 位作者 宋佳 柯涛 付伟 《舰船电子对抗》 2024年第2期86-92,共7页
提出了一种基于全局注意力机制的Robust-PointPillars三维目标检测方法,在智能驾驶的应用中,提高了目标检测的精度和鲁棒性。PointPillars等神经网络通过使用点云柱表示点云,具有实现三维目标检测的潜力。首先介绍了空间和通道双重注意... 提出了一种基于全局注意力机制的Robust-PointPillars三维目标检测方法,在智能驾驶的应用中,提高了目标检测的精度和鲁棒性。PointPillars等神经网络通过使用点云柱表示点云,具有实现三维目标检测的潜力。首先介绍了空间和通道双重注意力模块,以增强有学习价值的点云特征,解决了PointPillars缺乏点云柱内部学习机制和特征提取不足的问题;挤压与激励网络(SENet)模块的引入,使PointPillars对特征信息的学习理解能力得到进一步提高;最终,对受到干扰或缺失的传感器信号进行抑制,并利用全局注意力算法来提高鲁棒性。基于KITTI数据集上的目标检测结果,本文算法具有良好的目标检测精度和鲁棒性。 展开更多
关键词 三维目标检测 PointPillars 全局注意力机制 挤压与激励网络模块
下载PDF
基于SENet和深度可分离卷积胶囊网络的茶树叶部病害图像识别 被引量:6
20
作者 牟文芊 董萌萍 +2 位作者 孙文杰 杨晓霞 王秀美 《山东农业大学学报(自然科学版)》 北大核心 2021年第1期23-28,共6页
茶树是重要的经济作物,叶部病害的发生直接影响其产量和质量。针对胶囊网络在茶树叶部病害图像识别中识别率低和参数量大的问题,提出了一种基于SENet和深度可分离卷积胶囊网络的茶树叶部病害图像识别算法。首先,由于尚无茶树叶部病害图... 茶树是重要的经济作物,叶部病害的发生直接影响其产量和质量。针对胶囊网络在茶树叶部病害图像识别中识别率低和参数量大的问题,提出了一种基于SENet和深度可分离卷积胶囊网络的茶树叶部病害图像识别算法。首先,由于尚无茶树叶部病害图像标准数据集,构建了茶树叶部病害图像数据集。其次,在胶囊网络中引入深度可分离卷积,并在深度可分离卷积层后加入SENet。实验结果表明,提出算法的识别准确率为94.20%,相同条件下优于其它模型。 展开更多
关键词 胶囊网络 压缩激发网络 深度可分离卷积 茶树叶部病害
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部