The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were ...The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting.展开更多
Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearing...Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearings.This paper proposed a novel hermetic diaphragm squeeze film damper(HDSFD)for oil-free turbomachinery supported by gas lubricated bearings.Several types of HDSFDs with symmetrical structure were proposed for good damping performance.By considering the compressibility of the damper fluid,based on hydraulic fluid mechanics theory,a dynamic model of HDSFDs under medium is proposed,which successfully reflects the frequency dependence of force coefficients.Based on the dynamic model,the effects of damper fluid viscosity,bulk modulus of damper fluid,thickness of damper fluid film and plunger thickness on the dynamic stiffness and damping of HDSFDs were analyzed.An experimental test rig was assembled and series of experimental studies on HDSFDs were conducted.The damper fluid transverse flow is added to the existing HDSFD concept,which aims to make the dynamic force coefficients independent of frequency.Although the force coefficient is still frequency dependent,the damping coefficient at high frequency excitation with damper fluid supply twice as that without damper fluid supply.The results serve as a benchmark for the calibration of analytical tools under development.展开更多
This study deals with the analytical investigation of oscillatory squeeze film flow through a Brinkman viscoelastic Oldroyd-B fluid-saturated porous layer subject to two vertically harmonically oscillatory disks.The v...This study deals with the analytical investigation of oscillatory squeeze film flow through a Brinkman viscoelastic Oldroyd-B fluid-saturated porous layer subject to two vertically harmonically oscillatory disks.The validity of the present proposed analytical solutions is first demonstrated for the Newtonian fluids when bothΛ_(1)andΛ_(2)tend to zero by comparison with the previous literature.Results demonstrate that an increase in the elasticity parameterΛ_(1)correlates with a rise in axial velocities,indicating that the relaxation timeΛ_(1)facilitates enhanced squeeze flow.In the case of squeeze film flow in porous layers,low oscillating frequencies exert minimal effects on axial velocities,independent of variations in the viscoelasticity parameterΛ_(1).However,at higher oscillating frequencies,axial velocities escalate with increasing the viscoelasticity parameterΛ_(1).Furthermore,the retardation timeΛ_(2)of the viscoelastic fluid shows no significant effect on the axial velocity,regardless of oscillating frequency changes in both pure fluids and porous layers.展开更多
We study genuine entanglement among three qubits undergoing a noisy process that includes dissipation, squeezing,and decoherence. We obtain a general solution and analyze the asymptotic quantum states. We find that mo...We study genuine entanglement among three qubits undergoing a noisy process that includes dissipation, squeezing,and decoherence. We obtain a general solution and analyze the asymptotic quantum states. We find that most of these asymptotic states can be genuinely entangled depending upon the parameters of the channel, memory parameter, and the parameters of the initial states. We study Greenberger–Horne–Zeilinger(GHZ) states and W states, mixed with white noise,and determine the conditions for them to be genuinely entangled at infinity. We find that for these mixtures, it is possible to start with a bi-separable state(with a specific mixture of white noise) and end with genuine entangled states. However, the memory parameter μ must be very high. We find that in contrast to the two-qubit case, none of the three-qubit asymptotic states for n → ∞ are genuinely entangled.展开更多
Squeeze casting is a well-established and reliable process for fabricating high-integrity metallic alloys,bimetals,and composites.The quality and high performance of squeeze cast components are dependent on optimum ca...Squeeze casting is a well-established and reliable process for fabricating high-integrity metallic alloys,bimetals,and composites.The quality and high performance of squeeze cast components are dependent on optimum casting conditions.Inappropriate selection of parameter values may adversely affect the quality of the casting.The squeeze cast components are generally subjected to secondary processing such as heat treatment,extrusion,and other bulk deformation processes to improve the microstructural features and mechanical properties.Heat treatment further refines the grains and reduces porosity,consequently improving tensile strength,and hardness;however,ductility decreases.This paper provides a comprehensive review on studies concerning the influence of processing parameters on porosity,density,percentage elongation,strength,hardness,wear,and fracture of squeeze casting alloys,aiming to provide sufficient information on the squeeze casting process and the effects of processing parameters on product quality.展开更多
A comprehensive study on Sn macrosegregation behavior in ternary Al-Sn-Cu alloys was carried out by comparative analysis between gravity casting and squeeze casting samples.The microstructure and Sn distribution of th...A comprehensive study on Sn macrosegregation behavior in ternary Al-Sn-Cu alloys was carried out by comparative analysis between gravity casting and squeeze casting samples.The microstructure and Sn distribution of the castings were characterized by metallography,scanning electron microscopy(SEM),energy-dispersive X-ray(EDX)spectroscopy,and a direct reading spectrometer.Results show that there are obvious differences in Sn morphology between gravity casting and squeeze casting alloys.Under squeeze casting condition,the grain size of the casting is smaller and the distribution ofβ(Sn)is uniform.This effectively reduces the segregation of triangular grain boundary as well as the segregation of Sn.The segregation types of Sn in gravity casting and squeeze casting samples are obviously different.The upper surfaces of gravity casting samples show severe negative segregation,while all the lower surfaces have positive segregation.Compared with gravity casting,squeeze casting solidifies under isostatic pressure.Due to the direct contact between the upper surface of the casting and the mold,the casting solidifies faster under higher undercooling degree and pressure.Consequently,the uniform distribution of Sn reduces the segregation phenomenon on the surface of the casting.展开更多
Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu...Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu composite joints were studied.The experimental results depict that squeeze pressure is the most significant process parameter affecting the hardness and UTS.The optimal values of UTS(48 MPa)and hardness(76 HRB)are achieved at a melt temperature of 800℃,a die temperature of 250℃,and a squeeze pressure of 90 MPa.Scanning electron microscopy(SEM)shows that fractured surfaces show flatfaced morphology at the optimal experimental condition.Energy-dispersive spectroscopy(EDS)analysis depicts that the atomic weight percentage of Zn decreases with an increase in melt temperature and squeeze pressure.The optimal mechanical properties of the Al7075-Cu overcast joint were achieved at the Al2Cu eutectic phase due to the large number of copper atoms that dispersed into the aluminum melt during the solidification process and the formation of strong intermetallic bonds.Gray relational analysis integrated with the Taguchi method was used to develop an optimal set of control variables for multi-response parametric optimization.Confirmatory tests were performed to validate the effectiveness of the employed technique.The manufacturing of squeeze overcast Al7075-Cu composite joints at optimal process parameters delivers a great indication to acknowledge a new method for foundry practitioners to manufacture materials with superior mechanical properties.展开更多
Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal effic...Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal efficient method for the determination of optimal process parameters is still unavailable.In view of the shortcomings and development needs of the current research methods for the setting of SC process parameters,by consulting and analyzing the recent research literature on SC process parameters and using the CiteSpace literature analysis software,manual reading and statistical analysis,the current state and characteristics of the research methods used for the determination of SC process parameters are summarized.The literature data show that the number of pub-lications in the literature related to the design of SC process parameters generally trends upward albeit with signifi-cant fluctuations.Analysis of the research focus shows that both“mechanical properties”and“microstructure”are the two main subjects in the studies of SC process parameters.With regard to materials,aluminum alloys have been extensively studied.Five methods have been used to obtain SC process parameters:Physical experiments,numeri-cal simulation,modeling optimization,formula calculation,and the use of empirical values.Physical experiments are the main research methods.The main methods for designing SC process parameters are divided into three categories:Fully experimental methods,optimization methods that involve modeling based on experimental data,and theoreti-cal calculation methods that involve establishing an analytical formula.The research characteristics and shortcomings of each method were analyzed.Numerical simulations and model-based optimization have become the new required methods.Considering the development needs and data-driven trends of the SC process,suggestions for the develop-ment of SC process parameter research have been proposed.展开更多
The macrosegregation behaviors of Al-Sn-Cu ternary immiscible alloy castings and their effects on mechanical and tribological properties were investigated.The results demonstrate that Sn and Cu segregate in the castin...The macrosegregation behaviors of Al-Sn-Cu ternary immiscible alloy castings and their effects on mechanical and tribological properties were investigated.The results demonstrate that Sn and Cu segregate in the casting simultaneously,and the mass fraction of the two elements has a"U"shaped distribution.Significantly,positive and negative segregation occur in the casting,with positive segregation appearing on the top and lower surfaces and negative segregation on the remaining surfaces,with the 1/2 surface(hot node location)having the highest degree of negative segregation.Furthermore,the results of Vickers hardness,tensile strength,and elongation show that Sn and Cu cooperatively affect the mechanical properties of castings.The higher the mass fraction of Sn and Cu elements,the higher the hardness,the greater the tensile strength,and the better the elongation.The findings of the step-by-step loading tests demonstrate that the segregation of Sn and Cu significantly impacts the tribological characteristics of the castings.The higher the mass fraction of Sn and Cu on the sample surface,the better the tribological characteristics.展开更多
We investigate the finite-time performance of a quantum endoreversible Carnot engine cycle and its inverse operation-Carnot refrigeration cycle,employing a spin-1/2 system as the working substance.The thermal machine ...We investigate the finite-time performance of a quantum endoreversible Carnot engine cycle and its inverse operation-Carnot refrigeration cycle,employing a spin-1/2 system as the working substance.The thermal machine is alternatively driven by a hot boson bath of inverse temperatureβ_(h)and a cold boson bath at inverse temperatureβ_(c)(>βh).While for the engine model the hot bath is constructed to be squeezed,in the refrigeration cycle the cold bath is established to be squeezed,with squeezing parameter r.We obtain the analytical expressions for both efficiency and power in heat engines and for coefficient of performance and cooling rate in refrigerators.We find that,in the high-temperature limit,the efficiency at maximum power is bounded by the analytical valueη_(+)=√sech(2r)(1-η_(C)),and the coefficient of performance at the maximum figure of merit is limited byε_(+)=√sech(2r)(1+ε_(C))/sech(2r)(1+ε_(C))-εC)-1,whereη_(C)=1-β_(h)/β_(c)andε_(C)=β_(h)/(β_(c)-β_(h))are the respective Carnot values of the engines and refrigerators.These analytical results are identical to those obtained from the Carnot engines based on harmonic systems,indicating that the efficiency at maximum power and coefficient at maximum figure of merit are independent of the working substance.展开更多
This study focuses on generating and manipulating squeezed states with two external oscillators coupled by an InP HEMT operating at cryogenic temperatures.First,the small-signal nonlinear model of the transistor at hi...This study focuses on generating and manipulating squeezed states with two external oscillators coupled by an InP HEMT operating at cryogenic temperatures.First,the small-signal nonlinear model of the transistor at high frequency at 5 K is analyzed using quantum theory,and the related Lagrangian is theoretically derived.Subsequently,the total quantum Hamiltonian of the system is derived using Legendre transformation.The Hamiltonian of the system includes linear and nonlinear terms by which the effects on the time evolution of the states are studied.The main result shows that the squeezed state can be generated owing to the transistor’s nonlinearity;more importantly,it can be manipulated by some specific terms introduced in the nonlinear Hamiltonian.In fact,the nonlinearity of the transistors induces some effects,such as capacitance,inductance,and second-order transconductance,by which the properties of the external oscillators are changed.These changes may lead to squeezing or manipulating the parameters related to squeezing in the oscillators.In addition,it is theoretically derived that the circuit can generate two-mode squeezing.Finally,second-order correlation(photon counting statistics)is studied,and the results demonstrate that the designed circuit exhibits antibunching,where the quadrature operator shows squeezing behavior.展开更多
We theoretically study the quantum speed limit of a single atom trapped in a Fabry-Perot microresonator.The cavity mode will be squeezed when a driving laser is applied to the second-order nonlinear medium,and the eff...We theoretically study the quantum speed limit of a single atom trapped in a Fabry-Perot microresonator.The cavity mode will be squeezed when a driving laser is applied to the second-order nonlinear medium,and the effective Hamiltonian can be obtained under the Bogoliubov squeezing transformation.The analytical expression of the evolved atom state can be obtained by using the non-Hermitian Schr¨odinger equation for the initial excited state,and the quantum speed limit time coincides very well for both the analytical expression and the master equation method.From the perspective of quantum speed limit,it is more conducive to accelerate the evolution of the quantum state for the large detuning,strong driving,and coupling strength.For the case of the initial superposition state,the form of the initial state has more influence on the evolution speed.The quantum speed limit time is not only dependent on the system parameters but also determined by the initial state.展开更多
It is well known that squeezed states can be produced by nonlinear optical processes,such as parametric amplification and four wave mixing,in which two photons are created or annihilated simultaneously.Since the Hamil...It is well known that squeezed states can be produced by nonlinear optical processes,such as parametric amplification and four wave mixing,in which two photons are created or annihilated simultaneously.Since the Hamiltonian of the dynamic Casimir effect contains a~2 and a~(+2),photons in such a process are also generated or annihilated in pairs.Here we propose to get squeezed light through the dynamic Casimir effect.Specifically,we demonstrate it from the full quantum perspective and the semiclassical perspective successively.Different from previous work,we focus on generating squeezed states with the lowest average photon number,because such squeezed states have better quantum properties.For the full quantum picture,that is,phonons also have quantum properties,when the system is initially in the excited state of phonons,squeezed light cannot be generated during the evolution,but the light field can collapse to the squeezed state by measuring the state of phonons.When the phonon is treated as a classical quantity,that is,the cavity wall is continuously driven,squeezed light with the minimum average photon number will be generated in the case of off-resonance.This will play a positive role in better regulating the photon state generated by the dynamic Casimir system in the future.展开更多
Stable low-frequency squeezed vacuum states at a wavelength of 1550 nm were generated.By controlling the squeezing angle of the squeezed vacuum states,two types of low-frequency quadrature-phase squeezed vacuum states...Stable low-frequency squeezed vacuum states at a wavelength of 1550 nm were generated.By controlling the squeezing angle of the squeezed vacuum states,two types of low-frequency quadrature-phase squeezed vacuum states and quadrature-amplitude squeezed vacuum states were obtained using one setup respectively.A quantum-enhanced fiber Mach–Zehnder interferometer(FMZI)was demonstrated for low-frequency phase measurement using the generated quadrature-phase squeezed vacuum states that were injected.When phase modulation was measured with the quantumenhanced FMZI,there were above 3 dB quantum improvements beyond the shot-noise limit(SNL)from 40 kHz to 200 kHz,and 2.3 dB quantum improvement beyond the SNL at 20 kHz was obtained.The generated quadrature-amplitude squeezed vacuum state was applied to perform low-frequency amplitude modulation measurement for sensitivity beyond the SNL based on optical fiber construction.There were about 2 dB quantum improvements beyond the SNL from 60 kHz to 200 kHz.The current scheme proves that quantum-enhanced fiber-based sensors are feasible and have potential applications in high-precision measurements based on fiber,particularly in the low-frequency range.展开更多
An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure...An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure was higher than 65 MPa, the strength (ab) of A1Si9Cu3 alloys decreased with the forming pressure and pouring temperature increasing, whereas ab increased with the increase of filling velocity and mould preheating temperature. The ductility (6) by alloy was improved by increasing the forming pressure and filling velocity, but decreased with pouring temperature increasing. When the mould preheating temperature increased, the ductility increased first, and then decreased. Under the optimized parameters of pouring temperature 730 ℃, forming pressure 75 MPa, filling velocity 0.50 m/s, and mould preheating temperature 220 ℃, the tensile strength, elongation, and hardness of A1Si9Cu3 alloys obtained in squeeze casting were improved by 16.7%, 9.1%, and 10.1%, respectively, as compared with those of sand castings.展开更多
Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properti...Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properties were investigated. Results showed that the tensile strength and elongation of the SSSC-fabricated rod were improved by 22% and 17%, respectively, compared with those of the LSC-fabricated rod. For SSSC, the average particle size(APS) and the shape factor(SF) increased with the increase of re-melting temperature(Tr), whereas the tensile strength and elongation increased first and then decreased. The APS increased with increasing the mold temperature(Tm), whereas the SF increased initially and then decreased, which caused the tensile strength and elongation to increase initially and then decrease. The APS decreased and the SF increased as squeezing pressure(ps) increased, and the mechanical properties were enhanced. Moreover, the optimal Tr, ps and Tm are 848 K, 100 MPa and 523 K, respectively.展开更多
The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were inves...The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were investigated. The results show that squeeze casting process is an effective method to refine the grain. The composites are mainly composed of α-Mg, β-Mg17Al12 and Mg3Zn6Y icosahedral quasicrystal phase(I-phase). With the increase of applied pressure, the contents of β-Mg17Al12 phase and Mg3Zn6 Y quasicrystal particles increase, further matrix grain refinement occurs and coarse dendritic α-Mg transforms into equiaxed grain structure. The composite exhibits the maximum ultimate tensile strength and elongation of 194.3 MPa and 9.2% respectively when the applied pressure is 100 MPa, and a lot of dimples appear on the tensile fractography. Strengthening mechanisms of quasicrystal-reinforced AZ91 D magnesium matrix composites are chiefly fine-grain strengthening and quasicrystal particles strengthening.展开更多
Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that m...Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.展开更多
The squeeze cast process parameters of AZ80 magnesium alloy were optimized by morphological matrix. Experiments were conducted by varying squeeze pressure, die pre-heat temperature and pressure duration using L9(33)...The squeeze cast process parameters of AZ80 magnesium alloy were optimized by morphological matrix. Experiments were conducted by varying squeeze pressure, die pre-heat temperature and pressure duration using L9(33) orthogonal array of Taguchi method. In Taguchi method, a 3-level orthogonal array was used to determine the signal/noise ratio. Analysis of variance was used to determine the most significant process parameters affecting the mechanical properties. Mechanical properties such as ultimate tensile strength, elongation and hardness of the components were ascertained using multi variable linear regression analysis. Optimal squeeze cast process parameters were obtained.展开更多
A differential equation that is generally effective for squeeze film air damping of perforated plate and non perforated plate as well as in MEMS devices is developed.For perforated plate,the thickness and the dimens...A differential equation that is generally effective for squeeze film air damping of perforated plate and non perforated plate as well as in MEMS devices is developed.For perforated plate,the thickness and the dimensions of the plate are not limited.With boundary conditions,pressure distribution and the damping force on the plate can be found by solving the differential equation.Analytical expressions for damping pressure and damping force of a long strip holeplate are presented with a finite thickness and a finite width.To the extreme conditions of very thin plate and very thin hole,the results are reduced to the corresponding results of the conventional Reynolds' equation.Thus, the effectiveness of the generalized differential equation is justified.Therefore,the generalized Reynolds' equation will be a useful tool of design for damping structures in MEMS.展开更多
基金supported by the National Key R&D Program of China(No.2022YFB3404204)the National Natural Science Foundation of China(NSFC)under Grant Nos.U2241232,U2341253 and 52375317.
文摘The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting.
基金Supported by National Key Research and Development Program of China (Grant No.2021YFF0600208)National Natural Science Foundation of China (Grant No.52005170)Hunan Provincial Science and Technology Innovation Program of China (Grant No.2020RC4018)。
文摘Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearings.This paper proposed a novel hermetic diaphragm squeeze film damper(HDSFD)for oil-free turbomachinery supported by gas lubricated bearings.Several types of HDSFDs with symmetrical structure were proposed for good damping performance.By considering the compressibility of the damper fluid,based on hydraulic fluid mechanics theory,a dynamic model of HDSFDs under medium is proposed,which successfully reflects the frequency dependence of force coefficients.Based on the dynamic model,the effects of damper fluid viscosity,bulk modulus of damper fluid,thickness of damper fluid film and plunger thickness on the dynamic stiffness and damping of HDSFDs were analyzed.An experimental test rig was assembled and series of experimental studies on HDSFDs were conducted.The damper fluid transverse flow is added to the existing HDSFD concept,which aims to make the dynamic force coefficients independent of frequency.Although the force coefficient is still frequency dependent,the damping coefficient at high frequency excitation with damper fluid supply twice as that without damper fluid supply.The results serve as a benchmark for the calibration of analytical tools under development.
基金Project supported by the National Natural Science Foundation of China(No.12262026)the Natural Science Foundation of the Inner Mongolia Autonomous Region of China(No.2021MS01007)+1 种基金the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region of China(No.NMGIRT2323)the Fundamental Research Funds for the Central Universities(Nos.2232022G-13,2232023G-13,and 2232024G-13)。
文摘This study deals with the analytical investigation of oscillatory squeeze film flow through a Brinkman viscoelastic Oldroyd-B fluid-saturated porous layer subject to two vertically harmonically oscillatory disks.The validity of the present proposed analytical solutions is first demonstrated for the Newtonian fluids when bothΛ_(1)andΛ_(2)tend to zero by comparison with the previous literature.Results demonstrate that an increase in the elasticity parameterΛ_(1)correlates with a rise in axial velocities,indicating that the relaxation timeΛ_(1)facilitates enhanced squeeze flow.In the case of squeeze film flow in porous layers,low oscillating frequencies exert minimal effects on axial velocities,independent of variations in the viscoelasticity parameterΛ_(1).However,at higher oscillating frequencies,axial velocities escalate with increasing the viscoelasticity parameterΛ_(1).Furthermore,the retardation timeΛ_(2)of the viscoelastic fluid shows no significant effect on the axial velocity,regardless of oscillating frequency changes in both pure fluids and porous layers.
文摘We study genuine entanglement among three qubits undergoing a noisy process that includes dissipation, squeezing,and decoherence. We obtain a general solution and analyze the asymptotic quantum states. We find that most of these asymptotic states can be genuinely entangled depending upon the parameters of the channel, memory parameter, and the parameters of the initial states. We study Greenberger–Horne–Zeilinger(GHZ) states and W states, mixed with white noise,and determine the conditions for them to be genuinely entangled at infinity. We find that for these mixtures, it is possible to start with a bi-separable state(with a specific mixture of white noise) and end with genuine entangled states. However, the memory parameter μ must be very high. We find that in contrast to the two-qubit case, none of the three-qubit asymptotic states for n → ∞ are genuinely entangled.
文摘Squeeze casting is a well-established and reliable process for fabricating high-integrity metallic alloys,bimetals,and composites.The quality and high performance of squeeze cast components are dependent on optimum casting conditions.Inappropriate selection of parameter values may adversely affect the quality of the casting.The squeeze cast components are generally subjected to secondary processing such as heat treatment,extrusion,and other bulk deformation processes to improve the microstructural features and mechanical properties.Heat treatment further refines the grains and reduces porosity,consequently improving tensile strength,and hardness;however,ductility decreases.This paper provides a comprehensive review on studies concerning the influence of processing parameters on porosity,density,percentage elongation,strength,hardness,wear,and fracture of squeeze casting alloys,aiming to provide sufficient information on the squeeze casting process and the effects of processing parameters on product quality.
基金financially supported by the National Natural Science Foundation of China(No.51575151)the Science and Technology Project of Anhui Province,China(No.1501021006)。
文摘A comprehensive study on Sn macrosegregation behavior in ternary Al-Sn-Cu alloys was carried out by comparative analysis between gravity casting and squeeze casting samples.The microstructure and Sn distribution of the castings were characterized by metallography,scanning electron microscopy(SEM),energy-dispersive X-ray(EDX)spectroscopy,and a direct reading spectrometer.Results show that there are obvious differences in Sn morphology between gravity casting and squeeze casting alloys.Under squeeze casting condition,the grain size of the casting is smaller and the distribution ofβ(Sn)is uniform.This effectively reduces the segregation of triangular grain boundary as well as the segregation of Sn.The segregation types of Sn in gravity casting and squeeze casting samples are obviously different.The upper surfaces of gravity casting samples show severe negative segregation,while all the lower surfaces have positive segregation.Compared with gravity casting,squeeze casting solidifies under isostatic pressure.Due to the direct contact between the upper surface of the casting and the mold,the casting solidifies faster under higher undercooling degree and pressure.Consequently,the uniform distribution of Sn reduces the segregation phenomenon on the surface of the casting.
文摘Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu composite joints were studied.The experimental results depict that squeeze pressure is the most significant process parameter affecting the hardness and UTS.The optimal values of UTS(48 MPa)and hardness(76 HRB)are achieved at a melt temperature of 800℃,a die temperature of 250℃,and a squeeze pressure of 90 MPa.Scanning electron microscopy(SEM)shows that fractured surfaces show flatfaced morphology at the optimal experimental condition.Energy-dispersive spectroscopy(EDS)analysis depicts that the atomic weight percentage of Zn decreases with an increase in melt temperature and squeeze pressure.The optimal mechanical properties of the Al7075-Cu overcast joint were achieved at the Al2Cu eutectic phase due to the large number of copper atoms that dispersed into the aluminum melt during the solidification process and the formation of strong intermetallic bonds.Gray relational analysis integrated with the Taguchi method was used to develop an optimal set of control variables for multi-response parametric optimization.Confirmatory tests were performed to validate the effectiveness of the employed technique.The manufacturing of squeeze overcast Al7075-Cu composite joints at optimal process parameters delivers a great indication to acknowledge a new method for foundry practitioners to manufacture materials with superior mechanical properties.
基金Supported by National Natural Science Foundation of China(Grant Nos.51965006 and 51875209)Guangxi Natural Science Foundation of China(Grant No.2018GXNSFAA050111)+1 种基金Innovation Project of Guangxi Graduate Education of China(Grant No.YCSW2019035)Open Fund of National Engineering Research Center of Near-Shape Forming for Metallic Materials of China(Grant No.2019001).
文摘Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal efficient method for the determination of optimal process parameters is still unavailable.In view of the shortcomings and development needs of the current research methods for the setting of SC process parameters,by consulting and analyzing the recent research literature on SC process parameters and using the CiteSpace literature analysis software,manual reading and statistical analysis,the current state and characteristics of the research methods used for the determination of SC process parameters are summarized.The literature data show that the number of pub-lications in the literature related to the design of SC process parameters generally trends upward albeit with signifi-cant fluctuations.Analysis of the research focus shows that both“mechanical properties”and“microstructure”are the two main subjects in the studies of SC process parameters.With regard to materials,aluminum alloys have been extensively studied.Five methods have been used to obtain SC process parameters:Physical experiments,numeri-cal simulation,modeling optimization,formula calculation,and the use of empirical values.Physical experiments are the main research methods.The main methods for designing SC process parameters are divided into three categories:Fully experimental methods,optimization methods that involve modeling based on experimental data,and theoreti-cal calculation methods that involve establishing an analytical formula.The research characteristics and shortcomings of each method were analyzed.Numerical simulations and model-based optimization have become the new required methods.Considering the development needs and data-driven trends of the SC process,suggestions for the develop-ment of SC process parameter research have been proposed.
基金This research was financially supported by the National Natural Science Foundation of China(No.51575151 and No.52005005)the Science and Technology Project of Anhui Province,China(No.1501021006).
文摘The macrosegregation behaviors of Al-Sn-Cu ternary immiscible alloy castings and their effects on mechanical and tribological properties were investigated.The results demonstrate that Sn and Cu segregate in the casting simultaneously,and the mass fraction of the two elements has a"U"shaped distribution.Significantly,positive and negative segregation occur in the casting,with positive segregation appearing on the top and lower surfaces and negative segregation on the remaining surfaces,with the 1/2 surface(hot node location)having the highest degree of negative segregation.Furthermore,the results of Vickers hardness,tensile strength,and elongation show that Sn and Cu cooperatively affect the mechanical properties of castings.The higher the mass fraction of Sn and Cu elements,the higher the hardness,the greater the tensile strength,and the better the elongation.The findings of the step-by-step loading tests demonstrate that the segregation of Sn and Cu significantly impacts the tribological characteristics of the castings.The higher the mass fraction of Sn and Cu on the sample surface,the better the tribological characteristics.
基金the National Natural Science Foundation of China(Grant No.11875034)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology.
文摘We investigate the finite-time performance of a quantum endoreversible Carnot engine cycle and its inverse operation-Carnot refrigeration cycle,employing a spin-1/2 system as the working substance.The thermal machine is alternatively driven by a hot boson bath of inverse temperatureβ_(h)and a cold boson bath at inverse temperatureβ_(c)(>βh).While for the engine model the hot bath is constructed to be squeezed,in the refrigeration cycle the cold bath is established to be squeezed,with squeezing parameter r.We obtain the analytical expressions for both efficiency and power in heat engines and for coefficient of performance and cooling rate in refrigerators.We find that,in the high-temperature limit,the efficiency at maximum power is bounded by the analytical valueη_(+)=√sech(2r)(1-η_(C)),and the coefficient of performance at the maximum figure of merit is limited byε_(+)=√sech(2r)(1+ε_(C))/sech(2r)(1+ε_(C))-εC)-1,whereη_(C)=1-β_(h)/β_(c)andε_(C)=β_(h)/(β_(c)-β_(h))are the respective Carnot values of the engines and refrigerators.These analytical results are identical to those obtained from the Carnot engines based on harmonic systems,indicating that the efficiency at maximum power and coefficient at maximum figure of merit are independent of the working substance.
文摘This study focuses on generating and manipulating squeezed states with two external oscillators coupled by an InP HEMT operating at cryogenic temperatures.First,the small-signal nonlinear model of the transistor at high frequency at 5 K is analyzed using quantum theory,and the related Lagrangian is theoretically derived.Subsequently,the total quantum Hamiltonian of the system is derived using Legendre transformation.The Hamiltonian of the system includes linear and nonlinear terms by which the effects on the time evolution of the states are studied.The main result shows that the squeezed state can be generated owing to the transistor’s nonlinearity;more importantly,it can be manipulated by some specific terms introduced in the nonlinear Hamiltonian.In fact,the nonlinearity of the transistors induces some effects,such as capacitance,inductance,and second-order transconductance,by which the properties of the external oscillators are changed.These changes may lead to squeezing or manipulating the parameters related to squeezing in the oscillators.In addition,it is theoretically derived that the circuit can generate two-mode squeezing.Finally,second-order correlation(photon counting statistics)is studied,and the results demonstrate that the designed circuit exhibits antibunching,where the quadrature operator shows squeezing behavior.
基金Project supported by the National Natural Science Foundation of China(Grant No.12175029)the Fundamental Research Program of Shanxi Province,China(Grant No.20210302123063)。
文摘We theoretically study the quantum speed limit of a single atom trapped in a Fabry-Perot microresonator.The cavity mode will be squeezed when a driving laser is applied to the second-order nonlinear medium,and the effective Hamiltonian can be obtained under the Bogoliubov squeezing transformation.The analytical expression of the evolved atom state can be obtained by using the non-Hermitian Schr¨odinger equation for the initial excited state,and the quantum speed limit time coincides very well for both the analytical expression and the master equation method.From the perspective of quantum speed limit,it is more conducive to accelerate the evolution of the quantum state for the large detuning,strong driving,and coupling strength.For the case of the initial superposition state,the form of the initial state has more influence on the evolution speed.The quantum speed limit time is not only dependent on the system parameters but also determined by the initial state.
基金supported by the National Natural Science Foundation of China (Grant Nos.12174288,12274326,and 12204352)the National Key R&D Program of China (Grant No.2021YFA1400602)。
文摘It is well known that squeezed states can be produced by nonlinear optical processes,such as parametric amplification and four wave mixing,in which two photons are created or annihilated simultaneously.Since the Hamiltonian of the dynamic Casimir effect contains a~2 and a~(+2),photons in such a process are also generated or annihilated in pairs.Here we propose to get squeezed light through the dynamic Casimir effect.Specifically,we demonstrate it from the full quantum perspective and the semiclassical perspective successively.Different from previous work,we focus on generating squeezed states with the lowest average photon number,because such squeezed states have better quantum properties.For the full quantum picture,that is,phonons also have quantum properties,when the system is initially in the excited state of phonons,squeezed light cannot be generated during the evolution,but the light field can collapse to the squeezed state by measuring the state of phonons.When the phonon is treated as a classical quantity,that is,the cavity wall is continuously driven,squeezed light with the minimum average photon number will be generated in the case of off-resonance.This will play a positive role in better regulating the photon state generated by the dynamic Casimir system in the future.
基金Project supported by the National Natural Science Foundation of China(Grant No.62175135)the Fundamental Research Program of Shanxi Province(Grant No.202103021224025)。
文摘Stable low-frequency squeezed vacuum states at a wavelength of 1550 nm were generated.By controlling the squeezing angle of the squeezed vacuum states,two types of low-frequency quadrature-phase squeezed vacuum states and quadrature-amplitude squeezed vacuum states were obtained using one setup respectively.A quantum-enhanced fiber Mach–Zehnder interferometer(FMZI)was demonstrated for low-frequency phase measurement using the generated quadrature-phase squeezed vacuum states that were injected.When phase modulation was measured with the quantumenhanced FMZI,there were above 3 dB quantum improvements beyond the shot-noise limit(SNL)from 40 kHz to 200 kHz,and 2.3 dB quantum improvement beyond the SNL at 20 kHz was obtained.The generated quadrature-amplitude squeezed vacuum state was applied to perform low-frequency amplitude modulation measurement for sensitivity beyond the SNL based on optical fiber construction.There were about 2 dB quantum improvements beyond the SNL from 60 kHz to 200 kHz.The current scheme proves that quantum-enhanced fiber-based sensors are feasible and have potential applications in high-precision measurements based on fiber,particularly in the low-frequency range.
基金Project(11C26211304055) supported by Small to Medium Enterprise Innovation Fund
文摘An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure was higher than 65 MPa, the strength (ab) of A1Si9Cu3 alloys decreased with the forming pressure and pouring temperature increasing, whereas ab increased with the increase of filling velocity and mould preheating temperature. The ductility (6) by alloy was improved by increasing the forming pressure and filling velocity, but decreased with pouring temperature increasing. When the mould preheating temperature increased, the ductility increased first, and then decreased. Under the optimized parameters of pouring temperature 730 ℃, forming pressure 75 MPa, filling velocity 0.50 m/s, and mould preheating temperature 220 ℃, the tensile strength, elongation, and hardness of A1Si9Cu3 alloys obtained in squeeze casting were improved by 16.7%, 9.1%, and 10.1%, respectively, as compared with those of sand castings.
基金Project(51335009)supported by the National Natural Science Foundation of ChinaProject(2014JQ7273)supported by the Natural Science Foundation of Shaanxi Province of ChinaProject(CXY1514(1))supported by the Xi’an Science and Technology Plan Projects,China
文摘Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properties were investigated. Results showed that the tensile strength and elongation of the SSSC-fabricated rod were improved by 22% and 17%, respectively, compared with those of the LSC-fabricated rod. For SSSC, the average particle size(APS) and the shape factor(SF) increased with the increase of re-melting temperature(Tr), whereas the tensile strength and elongation increased first and then decreased. The APS increased with increasing the mold temperature(Tm), whereas the SF increased initially and then decreased, which caused the tensile strength and elongation to increase initially and then decrease. The APS decreased and the SF increased as squeezing pressure(ps) increased, and the mechanical properties were enhanced. Moreover, the optimal Tr, ps and Tm are 848 K, 100 MPa and 523 K, respectively.
基金Projects(5120414751274175)supported by the National Natural Science Foundation of China+3 种基金Projects(2011DFA505202014DFA50320)supported by the International Cooperation Program from the Ministry of Science and Technology of ChinaProject(20123088)supported by the Foundation for Graduate Students of Shanxi ProvinceChina
文摘The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were investigated. The results show that squeeze casting process is an effective method to refine the grain. The composites are mainly composed of α-Mg, β-Mg17Al12 and Mg3Zn6Y icosahedral quasicrystal phase(I-phase). With the increase of applied pressure, the contents of β-Mg17Al12 phase and Mg3Zn6 Y quasicrystal particles increase, further matrix grain refinement occurs and coarse dendritic α-Mg transforms into equiaxed grain structure. The composite exhibits the maximum ultimate tensile strength and elongation of 194.3 MPa and 9.2% respectively when the applied pressure is 100 MPa, and a lot of dimples appear on the tensile fractography. Strengthening mechanisms of quasicrystal-reinforced AZ91 D magnesium matrix composites are chiefly fine-grain strengthening and quasicrystal particles strengthening.
基金Project(2015A030312003)supported by the Guangdong Natural Science Foundation for Research Team,ChinaProject(51374110)supported by the National Natural Science Foundation of China
文摘Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.
基金Project (50975263) supported by the National Natural Science Foundation of ChinaProject (2011DFA50520) supported by International Science Technology Cooperation Program of China
文摘The squeeze cast process parameters of AZ80 magnesium alloy were optimized by morphological matrix. Experiments were conducted by varying squeeze pressure, die pre-heat temperature and pressure duration using L9(33) orthogonal array of Taguchi method. In Taguchi method, a 3-level orthogonal array was used to determine the signal/noise ratio. Analysis of variance was used to determine the most significant process parameters affecting the mechanical properties. Mechanical properties such as ultimate tensile strength, elongation and hardness of the components were ascertained using multi variable linear regression analysis. Optimal squeeze cast process parameters were obtained.
文摘A differential equation that is generally effective for squeeze film air damping of perforated plate and non perforated plate as well as in MEMS devices is developed.For perforated plate,the thickness and the dimensions of the plate are not limited.With boundary conditions,pressure distribution and the damping force on the plate can be found by solving the differential equation.Analytical expressions for damping pressure and damping force of a long strip holeplate are presented with a finite thickness and a finite width.To the extreme conditions of very thin plate and very thin hole,the results are reduced to the corresponding results of the conventional Reynolds' equation.Thus, the effectiveness of the generalized differential equation is justified.Therefore,the generalized Reynolds' equation will be a useful tool of design for damping structures in MEMS.