We theoretically study the quantum speed limit of a single atom trapped in a Fabry-Perot microresonator.The cavity mode will be squeezed when a driving laser is applied to the second-order nonlinear medium,and the eff...We theoretically study the quantum speed limit of a single atom trapped in a Fabry-Perot microresonator.The cavity mode will be squeezed when a driving laser is applied to the second-order nonlinear medium,and the effective Hamiltonian can be obtained under the Bogoliubov squeezing transformation.The analytical expression of the evolved atom state can be obtained by using the non-Hermitian Schr¨odinger equation for the initial excited state,and the quantum speed limit time coincides very well for both the analytical expression and the master equation method.From the perspective of quantum speed limit,it is more conducive to accelerate the evolution of the quantum state for the large detuning,strong driving,and coupling strength.For the case of the initial superposition state,the form of the initial state has more influence on the evolution speed.The quantum speed limit time is not only dependent on the system parameters but also determined by the initial state.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12175029)the Fundamental Research Program of Shanxi Province,China(Grant No.20210302123063)。
文摘We theoretically study the quantum speed limit of a single atom trapped in a Fabry-Perot microresonator.The cavity mode will be squeezed when a driving laser is applied to the second-order nonlinear medium,and the effective Hamiltonian can be obtained under the Bogoliubov squeezing transformation.The analytical expression of the evolved atom state can be obtained by using the non-Hermitian Schr¨odinger equation for the initial excited state,and the quantum speed limit time coincides very well for both the analytical expression and the master equation method.From the perspective of quantum speed limit,it is more conducive to accelerate the evolution of the quantum state for the large detuning,strong driving,and coupling strength.For the case of the initial superposition state,the form of the initial state has more influence on the evolution speed.The quantum speed limit time is not only dependent on the system parameters but also determined by the initial state.