We study genuine entanglement among three qubits undergoing a noisy process that includes dissipation, squeezing,and decoherence. We obtain a general solution and analyze the asymptotic quantum states. We find that mo...We study genuine entanglement among three qubits undergoing a noisy process that includes dissipation, squeezing,and decoherence. We obtain a general solution and analyze the asymptotic quantum states. We find that most of these asymptotic states can be genuinely entangled depending upon the parameters of the channel, memory parameter, and the parameters of the initial states. We study Greenberger–Horne–Zeilinger(GHZ) states and W states, mixed with white noise,and determine the conditions for them to be genuinely entangled at infinity. We find that for these mixtures, it is possible to start with a bi-separable state(with a specific mixture of white noise) and end with genuine entangled states. However, the memory parameter μ must be very high. We find that in contrast to the two-qubit case, none of the three-qubit asymptotic states for n → ∞ are genuinely entangled.展开更多
The current practice for the design of squeezed branch piles is mainly based on the calculated bearing capacity of circular piles. Insufficient considerations of the load-transfer mechanism, branch effect and failure ...The current practice for the design of squeezed branch piles is mainly based on the calculated bearing capacity of circular piles. Insufficient considerations of the load-transfer mechanism, branch effect and failure mechanism, as well as overreliance on pile load tests, have led to conservative designs and limited application. This study performs full-scale field load tests on instrumented squeezed branch piles and shows that the shaft force curves have obvious drop steps at the branch position, indicating that the branches can effectively share the pile top load. The effects of branch position, spacing, number and diameter on the pile bearing capacity are analyzed numerically. The numerical results indicate that the squeezed branch piles have two types of failure mechanisms, i.e. individual branch failure mechanism and cylindrical failure mechanism. Further research should focus on the development of the calculation method to determine the bearing capacities of squeezed branch piles considering these two failure mechanisms.展开更多
We investigate how an optical squeezed chaotic field(SCF) evolves in an amplitude dissipation channel. We have used the integration within ordered product of operators technique to derive its evolution law. We also ...We investigate how an optical squeezed chaotic field(SCF) evolves in an amplitude dissipation channel. We have used the integration within ordered product of operators technique to derive its evolution law. We also show that the density operator of SCF can be viewed as a generating field of the squeezed number state.展开更多
In this paper, we introduce photon-added and photon-subtracted squeezed vacuum state (PASV and PSSV) and obtain their normalized factors, which have the similar forms involved in Lengendre polynomials. Moreover, we ...In this paper, we introduce photon-added and photon-subtracted squeezed vacuum state (PASV and PSSV) and obtain their normalized factors, which have the similar forms involved in Lengendre polynomials. Moreover, we give the compact expressions of Wigner function, which are related to single-variable Hermite polynomials. Especially, we compare their nonclassicality in terms of Mandel Q-factor and the negativity of Wigner function.展开更多
This paper investigates the decoherence of photo-subtracted squeezed vacuum state (PSSVS) in dissipative channel by describing its statistical properties with time evolution such as Wigner function, Husimi function,...This paper investigates the decoherence of photo-subtracted squeezed vacuum state (PSSVS) in dissipative channel by describing its statistical properties with time evolution such as Wigner function, Husimi function, and tomogram. It first calculates the normalization factor of PSSVS related to Legendre polynomial. After deriving the normally ordered density Operator of PSSVS in dissipative channel, one obtains the explicit analytical expressions of time evolution of PSSVS's statistical distribution function. It finds that these statistical distributions loss their non-Gaussian nature and become Gaussian at last in the dissipative environment as expected.展开更多
It is known that exp [iA (Q] P1 - i/2)] is a unitary single-mode squeezing operator, where Q1, P1 are the coordinate and momentum operators, respectively. In this paper we employ Dirac's coordinate representation t...It is known that exp [iA (Q] P1 - i/2)] is a unitary single-mode squeezing operator, where Q1, P1 are the coordinate and momentum operators, respectively. In this paper we employ Dirac's coordinate representation to prove that the exponential operator Sn ≡exp[iλi=1∑n(QiPi+1+Qi+1Pi))],(Qn+1=Q1,Pn+1=P1),is an n-mode squeezing operator which enhances the standard squeezing. By virtue of the technique of integration within an ordered product of operators we derive Sn's normally ordered expansion and obtain new n-mode squeezed vacuum states, its Wigner function is calculated by using the Weyl ordering invariance under similar transformations.展开更多
We present a continuous-wave squeezed vacuum generation system at a telecommunication wavelength of 1.3 μm. By employing a home-made single-frequency Nd:YVO4 laser with dual wavelength outputs as the pump source, vi...We present a continuous-wave squeezed vacuum generation system at a telecommunication wavelength of 1.3 μm. By employing a home-made single-frequency Nd:YVO4 laser with dual wavelength outputs as the pump source, via an optical parameter oscillator based on periodically poled KTR a squeezed vacuum of 6.1 dB+0.1 dB below the shot noise limit at 1342 nm is experimentally measured. This system could be utilized for demonstrating practical quantum information networks.展开更多
We report the experimental generation of a squeezed vacuum at frequencies ranging from 2.5 kHz to 200 kHz that is resonant on the cesium D2 line by using a below-threshold optical parametric oscillator (OPO). The OP...We report the experimental generation of a squeezed vacuum at frequencies ranging from 2.5 kHz to 200 kHz that is resonant on the cesium D2 line by using a below-threshold optical parametric oscillator (OPO). The OPO is based on a periodically-poled KTiOPO4 (PPKTP) crystal that is pumped using a bow-tie four-mirror ring frequency doubler. The phase of the squeezed light is controlled using a quantum noise locking technique. At a pump power of 115 mW, maximum quadrature phase squeezing of 3.5 dB and anti-squeezing of 7.5 dB are detected using a home-made balanced homodyne detector. This squeezed vacuum at an atomic transition in the kilohertz range is an ideal quantum source for quantum metrology of enhancing measurement precision, especially for ultra-sensitive measurement of weak magnetic fields when using a Cs atomic magnetometer in the audio frequency range.展开更多
We propose an arbitrated quantum signature (AQS) scheme with continuous variable (CV) squeezed vacuum states, which requires three parties, i.e., the signer Alice, the verifier Bob and the arbitrator Charlie trust...We propose an arbitrated quantum signature (AQS) scheme with continuous variable (CV) squeezed vacuum states, which requires three parties, i.e., the signer Alice, the verifier Bob and the arbitrator Charlie trusted by Alice and Bob, and three phases consisting of the initial phase, the signature phase and the verification phase. We evaluate and compare the original state and the teleported state by using the fidelity and the beam splitter (BS) strategy. The security is ensured by the CV-based quantum key distribution (CV-QKD) and quantum teleportation of squeezed states. Security analyses show that the generated signature can be neither disavowed by the signer and the receiver nor counterfeited by anyone with the shared keys. Furthermore, the scheme can also detect other manners of potential attack although they may be successful. Also, the integrality and authenticity of the transmitted messages can be guaranteed. Compared to the signature scheme of CV-based coherent states, our scheme has better encoding efficiency and performance. It is a potential high-speed quantum signature scheme with high repetition rate and detection efficiency which can be achieved by using the standard off-the-shelf components when compared to the discrete-variable (DV) quantum signature scheme.展开更多
The decoherence of two initially entangled qubits coupled with a squeezed vacuum cavity separately is investigated exactly. The results show that, first, in principle, the disentanglement time decreases with the incre...The decoherence of two initially entangled qubits coupled with a squeezed vacuum cavity separately is investigated exactly. The results show that, first, in principle, the disentanglement time decreases with the increase of squeeze parameter r, due to the augmenting of average photon number of every mode in the squeezed vacuum cavity. Second, there appear entanglement revivals after the complete disentanglement for the ease of even parity initial Bell state, while there occur the entanglement decrease and the entanglement revival before the complete disentanglement for the case of odd parity initial Bell state. The results are quite different from those for the case of qubits in a vacuum cavity.展开更多
Recur to multi-hole and better elastic characteristics of metal rubber (MR), a new squeezed film damper with MR (SFD/MR) throttle ring installed on the end of MR and MR damping ring installed on the radial directi...Recur to multi-hole and better elastic characteristics of metal rubber (MR), a new squeezed film damper with MR (SFD/MR) throttle ring installed on the end of MR and MR damping ring installed on the radial direction of MR is implemented. Based on the D'alembert principle, a locomotion equation and the mathematical model of stationary response of SFD/MR system is put forward. It proves that the SFD/MR has better ability to resist unbalance loads than the traditional SFD after the stationary dynamic characteristics of the traditional SFD and the new SFD/MR are researched.展开更多
We provide a measure to characterize the non-Gaussianity of phase-space function of bosonic quantum states based on the cumulant theory. We study the non-Gaussianity dynamics of two-mode squeezed number states by anal...We provide a measure to characterize the non-Gaussianity of phase-space function of bosonic quantum states based on the cumulant theory. We study the non-Gaussianity dynamics of two-mode squeezed number states by analyzing the phase-averaged kurtosis for two different models of decoherence: amplitude damping model and phase damping model.For the amplitude damping model, the non-Gaussianity is very fragile and completely vanishes at a finite time. For the phase damping model, such states exhibit rich non-Gaussian characters. In particular, we obtain a transition time that such states can transform from sub-Gaussianity into super-Gaussianity during the evolution. Finally, we compare our measure with the existing measures of non-Gaussianity under the independent dephasing environment.展开更多
A scheme is proposed to generate an N-qubit cluster-type entangled squeezed vacuum state (CTESVS) based on the two-photon interaction between a two-level atomand the cavity fields with the cavity QED system. The CTE...A scheme is proposed to generate an N-qubit cluster-type entangled squeezed vacuum state (CTESVS) based on the two-photon interaction between a two-level atomand the cavity fields with the cavity QED system. The CTESVS in N separate cavities can be effectively obtained after performing a simple one-qubit measurement on the atom. The influence of cavity decay on the CTESVS is also discussed.展开更多
We construct a new type of photon-subtracted squeezed coherent state (PSSCS) based on a squeezed coherent state (SCS) [Phys.Lett.A 220 (1996)81].Some of the statistical properties of the PSSCS,such as Mandel's Q p...We construct a new type of photon-subtracted squeezed coherent state (PSSCS) based on a squeezed coherent state (SCS) [Phys.Lett.A 220 (1996)81].Some of the statistical properties of the PSSCS,such as Mandel's Q parameter and photon-number distribution,are investigated and the corresponding non-classicality is discussed.展开更多
We study a system consisting of two identical non-interacting single-mode cavity fields coupled to a common vacuum environment and provide general, explicit, and exact solutions to its master equation by means of the ...We study a system consisting of two identical non-interacting single-mode cavity fields coupled to a common vacuum environment and provide general, explicit, and exact solutions to its master equation by means of the characteristic function method. We analyze the entanglement dynamics of two-mode squeezed thermal state in this model and show that its entanglement dynamics is strongly determined by the two-mode squeezing parameter and the purity. In particular, we find that two-mode squeezed thermal state with the squeezing parameter r ≤ -(1/2) In √u is extremely fragile and almost does not survive in a common vacuum environment. We investigate the time evolution of nonlocality for two-mode squeezed thermal state in such an environment. It is found that the evolved state loses its nonlocality in the beginning of the evolution, but after a time, the revival of nonlocality can occur.展开更多
As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundati...As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundation failure. Pile is a popular foundation used in collapsible loess. The squeezed branch and plate pile is a new type of pile developed in recent years and has not be used in a project before. In this paper three squeezed branch and plate piles are tested in collapsible loess after immersion processing. The results may be used for reference in similar construction project, and to provide theoretical references for de- signing of the squeezed branch and plate piles in engineering practice.展开更多
By using the technique of integration within an ordered product of operators, the normal ordered density operator of the photon-subtracted squeezed thermal state (PSSTS) is derived. Then the corresponding Wigner fun...By using the technique of integration within an ordered product of operators, the normal ordered density operator of the photon-subtracted squeezed thermal state (PSSTS) is derived. Then the corresponding Wigner function is presented by using the coherent state representation of the Wigner operator. The nonclassical properties of the PSSTS are discussed based on the negativity of the Wigner function.展开更多
We find a new x-parameter squeezed coherent state (p, q)κ representation, which possesses well-behaved features, i.e., its Wigner function's marginal distribution in the "q-direction" and in the "p-direction" ...We find a new x-parameter squeezed coherent state (p, q)κ representation, which possesses well-behaved features, i.e., its Wigner function's marginal distribution in the "q-direction" and in the "p-direction" is the Gauss/an form exp(-κ(q' - q)2}, and exp{(p' - p)2/κ}, respectively. Based on this, the Husimi function of(p, q)κ is also obtained, which is a Gauss/an broaden version of the Wigner function. The (P, q)κ state provides a good representative space for studying various properties ot the Husimi operator.展开更多
For the beam splitter attack strategy against quantum key distribution using two-mode squeezed states, the analytical expression of the optimal beam splitter parameter is provided in this paper by applying the Shannon...For the beam splitter attack strategy against quantum key distribution using two-mode squeezed states, the analytical expression of the optimal beam splitter parameter is provided in this paper by applying the Shannon information theory. The theoretical secret information rate after error correction and privacy amplification is given in terms of the squeezed parameter and channel parameters. The results show that the two-mode squeezed state quantum key distribution is secure against an optimal beam splitter attack.展开更多
We present what is relevant to squeezed states of initial space time and how that affects both the composition of relic GW, and also gravitons. A side issue to consider is if gravitons can be configured as semi classi...We present what is relevant to squeezed states of initial space time and how that affects both the composition of relic GW, and also gravitons. A side issue to consider is if gravitons can be configured as semi classical 'particles', which is akin to the Pilot model of Quantum Mechanics as embedded in a larger non linear 'deterministic' background.展开更多
文摘We study genuine entanglement among three qubits undergoing a noisy process that includes dissipation, squeezing,and decoherence. We obtain a general solution and analyze the asymptotic quantum states. We find that most of these asymptotic states can be genuinely entangled depending upon the parameters of the channel, memory parameter, and the parameters of the initial states. We study Greenberger–Horne–Zeilinger(GHZ) states and W states, mixed with white noise,and determine the conditions for them to be genuinely entangled at infinity. We find that for these mixtures, it is possible to start with a bi-separable state(with a specific mixture of white noise) and end with genuine entangled states. However, the memory parameter μ must be very high. We find that in contrast to the two-qubit case, none of the three-qubit asymptotic states for n → ∞ are genuinely entangled.
基金supported by the National Natural Science Foundation of China (Grant Nos. U1404527 and 51508166)Opening Laboratory for Deep Mine Construction of Henan Polytechnic University (2014KF-07)
文摘The current practice for the design of squeezed branch piles is mainly based on the calculated bearing capacity of circular piles. Insufficient considerations of the load-transfer mechanism, branch effect and failure mechanism, as well as overreliance on pile load tests, have led to conservative designs and limited application. This study performs full-scale field load tests on instrumented squeezed branch piles and shows that the shaft force curves have obvious drop steps at the branch position, indicating that the branches can effectively share the pile top load. The effects of branch position, spacing, number and diameter on the pile bearing capacity are analyzed numerically. The numerical results indicate that the squeezed branch piles have two types of failure mechanisms, i.e. individual branch failure mechanism and cylindrical failure mechanism. Further research should focus on the development of the calculation method to determine the bearing capacities of squeezed branch piles considering these two failure mechanisms.
基金Project supported by the National Natural Science Foundation of China(Grant No.10574647)the Natural Science Foundation of Shandong Province,China(Grant No.Y2008A16)the University Experimental Technology Foundation of Shandong Province of China(Grant No.S04W138)
文摘We investigate how an optical squeezed chaotic field(SCF) evolves in an amplitude dissipation channel. We have used the integration within ordered product of operators technique to derive its evolution law. We also show that the density operator of SCF can be viewed as a generating field of the squeezed number state.
基金supported by the National Natural Science Foundation of China (Grant No.11047133)the Natural Science Foundation of Jiangxi Province of China (Grant No.2010GQW0027)+1 种基金the Key Program Foundation of Ministry of Education of China (Grant No.210115)the Research Foundation of the Education Department of Jiangxi Province of China (Grant Nos.GJJ10097 and GJJ11390)
文摘In this paper, we introduce photon-added and photon-subtracted squeezed vacuum state (PASV and PSSV) and obtain their normalized factors, which have the similar forms involved in Lengendre polynomials. Moreover, we give the compact expressions of Wigner function, which are related to single-variable Hermite polynomials. Especially, we compare their nonclassicality in terms of Mandel Q-factor and the negativity of Wigner function.
基金supported by the National Natural Science Foundation of China (Grant No. 10775097)the Key Program Foundation of the Ministry of Education of China (Grant No. 210115)the Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ10097)
文摘This paper investigates the decoherence of photo-subtracted squeezed vacuum state (PSSVS) in dissipative channel by describing its statistical properties with time evolution such as Wigner function, Husimi function, and tomogram. It first calculates the normalization factor of PSSVS related to Legendre polynomial. After deriving the normally ordered density Operator of PSSVS in dissipative channel, one obtains the explicit analytical expressions of time evolution of PSSVS's statistical distribution function. It finds that these statistical distributions loss their non-Gaussian nature and become Gaussian at last in the dissipative environment as expected.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10775097 and 10874174)the Research Foundation of the Education Department of Jiangxi Province of China
文摘It is known that exp [iA (Q] P1 - i/2)] is a unitary single-mode squeezing operator, where Q1, P1 are the coordinate and momentum operators, respectively. In this paper we employ Dirac's coordinate representation to prove that the exponential operator Sn ≡exp[iλi=1∑n(QiPi+1+Qi+1Pi))],(Qn+1=Q1,Pn+1=P1),is an n-mode squeezing operator which enhances the standard squeezing. By virtue of the technique of integration within an ordered product of operators we derive Sn's normally ordered expansion and obtain new n-mode squeezed vacuum states, its Wigner function is calculated by using the Weyl ordering invariance under similar transformations.
基金supported by the National Basic Research Program of China (Grant No. 2010CB923101)the National Natural Science Foundation of China (Grant Nos. 61008001 and 61227015)the Natural Science Foundation of Shanxi Province, China (Grant No. 2011021003-2)
文摘We present a continuous-wave squeezed vacuum generation system at a telecommunication wavelength of 1.3 μm. By employing a home-made single-frequency Nd:YVO4 laser with dual wavelength outputs as the pump source, via an optical parameter oscillator based on periodically poled KTR a squeezed vacuum of 6.1 dB+0.1 dB below the shot noise limit at 1342 nm is experimentally measured. This system could be utilized for demonstrating practical quantum information networks.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11634008,61227902,11574187,and 11674203)the National Key Research and Development Program of China(Grant No.2017YFA0304500)the Fund of“1331 Project”Key Subjects Construction of Shanxi Province,China
文摘We report the experimental generation of a squeezed vacuum at frequencies ranging from 2.5 kHz to 200 kHz that is resonant on the cesium D2 line by using a below-threshold optical parametric oscillator (OPO). The OPO is based on a periodically-poled KTiOPO4 (PPKTP) crystal that is pumped using a bow-tie four-mirror ring frequency doubler. The phase of the squeezed light is controlled using a quantum noise locking technique. At a pump power of 115 mW, maximum quadrature phase squeezing of 3.5 dB and anti-squeezing of 7.5 dB are detected using a home-made balanced homodyne detector. This squeezed vacuum at an atomic transition in the kilohertz range is an ideal quantum source for quantum metrology of enhancing measurement precision, especially for ultra-sensitive measurement of weak magnetic fields when using a Cs atomic magnetometer in the audio frequency range.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61379153 and 61572529)
文摘We propose an arbitrated quantum signature (AQS) scheme with continuous variable (CV) squeezed vacuum states, which requires three parties, i.e., the signer Alice, the verifier Bob and the arbitrator Charlie trusted by Alice and Bob, and three phases consisting of the initial phase, the signature phase and the verification phase. We evaluate and compare the original state and the teleported state by using the fidelity and the beam splitter (BS) strategy. The security is ensured by the CV-based quantum key distribution (CV-QKD) and quantum teleportation of squeezed states. Security analyses show that the generated signature can be neither disavowed by the signer and the receiver nor counterfeited by anyone with the shared keys. Furthermore, the scheme can also detect other manners of potential attack although they may be successful. Also, the integrality and authenticity of the transmitted messages can be guaranteed. Compared to the signature scheme of CV-based coherent states, our scheme has better encoding efficiency and performance. It is a potential high-speed quantum signature scheme with high repetition rate and detection efficiency which can be achieved by using the standard off-the-shelf components when compared to the discrete-variable (DV) quantum signature scheme.
基金supported by the National Natural Science Foundation of China (Grant No 60578055)the State Key Program for Basic Research of China (Grant Nos 2007CB925204 and 2007CB307001)
文摘The decoherence of two initially entangled qubits coupled with a squeezed vacuum cavity separately is investigated exactly. The results show that, first, in principle, the disentanglement time decreases with the increase of squeeze parameter r, due to the augmenting of average photon number of every mode in the squeezed vacuum cavity. Second, there appear entanglement revivals after the complete disentanglement for the ease of even parity initial Bell state, while there occur the entanglement decrease and the entanglement revival before the complete disentanglement for the case of odd parity initial Bell state. The results are quite different from those for the case of qubits in a vacuum cavity.
基金This project is supported by National Natural Science Foundation of China (No.50075017)
文摘Recur to multi-hole and better elastic characteristics of metal rubber (MR), a new squeezed film damper with MR (SFD/MR) throttle ring installed on the end of MR and MR damping ring installed on the radial direction of MR is implemented. Based on the D'alembert principle, a locomotion equation and the mathematical model of stationary response of SFD/MR system is put forward. It proves that the SFD/MR has better ability to resist unbalance loads than the traditional SFD after the stationary dynamic characteristics of the traditional SFD and the new SFD/MR are researched.
基金Project supported by the Natural Science Foundation of Hunan Province,China(Grant No.2017JJ2214)the Key Project Foundation of the Education Department of Hunan Province,China(Grant No.14A114
文摘We provide a measure to characterize the non-Gaussianity of phase-space function of bosonic quantum states based on the cumulant theory. We study the non-Gaussianity dynamics of two-mode squeezed number states by analyzing the phase-averaged kurtosis for two different models of decoherence: amplitude damping model and phase damping model.For the amplitude damping model, the non-Gaussianity is very fragile and completely vanishes at a finite time. For the phase damping model, such states exhibit rich non-Gaussian characters. In particular, we obtain a transition time that such states can transform from sub-Gaussianity into super-Gaussianity during the evolution. Finally, we compare our measure with the existing measures of non-Gaussianity under the independent dephasing environment.
基金Project supported by the International Research & Development Program of the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(MEST)of Korea(Grant No.2011-0030864)the National Natural Science Foundation of China(Grant Nos.11264042and 61068001)+2 种基金the China Postdoctoral Science Foundation(Grant No.2012M520612)the Program for Chun Miao Excellent Talents of Jilin Provincial Department of Education(Grant No.201316)the Talent Program of Yanbian University of China(Grant No.950010001)
文摘A scheme is proposed to generate an N-qubit cluster-type entangled squeezed vacuum state (CTESVS) based on the two-photon interaction between a two-level atomand the cavity fields with the cavity QED system. The CTESVS in N separate cavities can be effectively obtained after performing a simple one-qubit measurement on the atom. The influence of cavity decay on the CTESVS is also discussed.
基金Supported by the National Natural Science Foundation of China under Grant No 10874174the Specialized Research Fund for the Doctoral Program of Higher Education(No 20070358009)+1 种基金the Excellent Young Talents Fund of Higher School in Anhui Province(No 2011SQRL147)the National Science Foundation for Young Scientists of Anhui Province of China(No 1208085QA14).
文摘We construct a new type of photon-subtracted squeezed coherent state (PSSCS) based on a squeezed coherent state (SCS) [Phys.Lett.A 220 (1996)81].Some of the statistical properties of the PSSCS,such as Mandel's Q parameter and photon-number distribution,are investigated and the corresponding non-classicality is discussed.
基金Supported by Hunan Provincial Natural Science Foundation of China under Grant No.10JJ6010the Key Project Foundation of Hunan Provincial Education Department of China under Grant No.10A095
文摘We study a system consisting of two identical non-interacting single-mode cavity fields coupled to a common vacuum environment and provide general, explicit, and exact solutions to its master equation by means of the characteristic function method. We analyze the entanglement dynamics of two-mode squeezed thermal state in this model and show that its entanglement dynamics is strongly determined by the two-mode squeezing parameter and the purity. In particular, we find that two-mode squeezed thermal state with the squeezing parameter r ≤ -(1/2) In √u is extremely fragile and almost does not survive in a common vacuum environment. We investigate the time evolution of nonlocality for two-mode squeezed thermal state in such an environment. It is found that the evolved state loses its nonlocality in the beginning of the evolution, but after a time, the revival of nonlocality can occur.
文摘As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundation failure. Pile is a popular foundation used in collapsible loess. The squeezed branch and plate pile is a new type of pile developed in recent years and has not be used in a project before. In this paper three squeezed branch and plate piles are tested in collapsible loess after immersion processing. The results may be used for reference in similar construction project, and to provide theoretical references for de- signing of the squeezed branch and plate piles in engineering practice.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10775097 and 10874174)the Research Foundation of the Education Department of Jiangxi Province of China
文摘By using the technique of integration within an ordered product of operators, the normal ordered density operator of the photon-subtracted squeezed thermal state (PSSTS) is derived. Then the corresponding Wigner function is presented by using the coherent state representation of the Wigner operator. The nonclassical properties of the PSSTS are discussed based on the negativity of the Wigner function.
基金*The project supported by the Specialized Research Fund for the Doctorial Progress of.Higher Education of China under Grant No. 20040358019
文摘We find a new x-parameter squeezed coherent state (p, q)κ representation, which possesses well-behaved features, i.e., its Wigner function's marginal distribution in the "q-direction" and in the "p-direction" is the Gauss/an form exp(-κ(q' - q)2}, and exp{(p' - p)2/κ}, respectively. Based on this, the Husimi function of(p, q)κ is also obtained, which is a Gauss/an broaden version of the Wigner function. The (P, q)κ state provides a good representative space for studying various properties ot the Husimi operator.
基金Project supported by the Shanghai Jiaotong University (SJTU) Young Teacher Foundation,China (Grant No A2831B)the SJTU Participating in Research Projects (PRPs),China (Grant No T03011030)the National Natural Science Foundation of China(Grant No 60472018)
文摘For the beam splitter attack strategy against quantum key distribution using two-mode squeezed states, the analytical expression of the optimal beam splitter parameter is provided in this paper by applying the Shannon information theory. The theoretical secret information rate after error correction and privacy amplification is given in terms of the squeezed parameter and channel parameters. The results show that the two-mode squeezed state quantum key distribution is secure against an optimal beam splitter attack.
文摘We present what is relevant to squeezed states of initial space time and how that affects both the composition of relic GW, and also gravitons. A side issue to consider is if gravitons can be configured as semi classical 'particles', which is akin to the Pilot model of Quantum Mechanics as embedded in a larger non linear 'deterministic' background.