We provide a measure to characterize the non-Gaussianity of phase-space function of bosonic quantum states based on the cumulant theory. We study the non-Gaussianity dynamics of two-mode squeezed number states by anal...We provide a measure to characterize the non-Gaussianity of phase-space function of bosonic quantum states based on the cumulant theory. We study the non-Gaussianity dynamics of two-mode squeezed number states by analyzing the phase-averaged kurtosis for two different models of decoherence: amplitude damping model and phase damping model.For the amplitude damping model, the non-Gaussianity is very fragile and completely vanishes at a finite time. For the phase damping model, such states exhibit rich non-Gaussian characters. In particular, we obtain a transition time that such states can transform from sub-Gaussianity into super-Gaussianity during the evolution. Finally, we compare our measure with the existing measures of non-Gaussianity under the independent dephasing environment.展开更多
We investigate how an optical squeezed chaotic field(SCF) evolves in an amplitude dissipation channel. We have used the integration within ordered product of operators technique to derive its evolution law. We also ...We investigate how an optical squeezed chaotic field(SCF) evolves in an amplitude dissipation channel. We have used the integration within ordered product of operators technique to derive its evolution law. We also show that the density operator of SCF can be viewed as a generating field of the squeezed number state.展开更多
Based on the fact that a two-mode squeezed number state is a two-variable Hermite polynomial excitation of the two-mode squeezed vacuum state, the result of one-mode l-photon measurement for the two-mode squeezed numb...Based on the fact that a two-mode squeezed number state is a two-variable Hermite polynomial excitation of the two-mode squeezed vacuum state, the result of one-mode l-photon measurement for the two-mode squeezed number state S2|m, n) is discussed. It is found that a remaining field-mode simultaneously collapses into a number state |n - m+l| with the coefficient being a Jacobi polynomial of n, m and l, which manifestly exhibits the entanglement between the two modes, i.e. it depends on the number-difference between the two modes. The second mode collapses into an excited coherent state when the first mode is measured as a coherent state.展开更多
基金Project supported by the Natural Science Foundation of Hunan Province,China(Grant No.2017JJ2214)the Key Project Foundation of the Education Department of Hunan Province,China(Grant No.14A114
文摘We provide a measure to characterize the non-Gaussianity of phase-space function of bosonic quantum states based on the cumulant theory. We study the non-Gaussianity dynamics of two-mode squeezed number states by analyzing the phase-averaged kurtosis for two different models of decoherence: amplitude damping model and phase damping model.For the amplitude damping model, the non-Gaussianity is very fragile and completely vanishes at a finite time. For the phase damping model, such states exhibit rich non-Gaussian characters. In particular, we obtain a transition time that such states can transform from sub-Gaussianity into super-Gaussianity during the evolution. Finally, we compare our measure with the existing measures of non-Gaussianity under the independent dephasing environment.
基金Project supported by the National Natural Science Foundation of China(Grant No.10574647)the Natural Science Foundation of Shandong Province,China(Grant No.Y2008A16)the University Experimental Technology Foundation of Shandong Province of China(Grant No.S04W138)
文摘We investigate how an optical squeezed chaotic field(SCF) evolves in an amplitude dissipation channel. We have used the integration within ordered product of operators technique to derive its evolution law. We also show that the density operator of SCF can be viewed as a generating field of the squeezed number state.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774108)
文摘Based on the fact that a two-mode squeezed number state is a two-variable Hermite polynomial excitation of the two-mode squeezed vacuum state, the result of one-mode l-photon measurement for the two-mode squeezed number state S2|m, n) is discussed. It is found that a remaining field-mode simultaneously collapses into a number state |n - m+l| with the coefficient being a Jacobi polynomial of n, m and l, which manifestly exhibits the entanglement between the two modes, i.e. it depends on the number-difference between the two modes. The second mode collapses into an excited coherent state when the first mode is measured as a coherent state.