During a sea firing training,the intelligent detection of projectile-induced water column targets in a firing video is the prerequisite for and critical to the automatic calculation of miss distance,while the correct ...During a sea firing training,the intelligent detection of projectile-induced water column targets in a firing video is the prerequisite for and critical to the automatic calculation of miss distance,while the correct and precise calculation of miss distance is directly affected by the accuracy,false alarm rate and time delay of detection.After analyzing the characteristics of projectile-induced water columns,an accurate detection algorithm for time backtracked projectile-induced water columns based on the improved you only look once(YOLO)network is put forward.The capability and accuracy of detecting projectileinduced water column targets with the conventional YOLO network are improved by optimizing the anchor box through K-means clustering and embedding the squeeze and excitation(SE)attention module.The detection area is limited by adopting a sea-sky line detection algorithm based on gray level co-occurrence matrix(GLCM),so as to effectively eliminate such disturbances as ocean waves and ship wakes,and lower the false alarm rate of projectile-induced water column detection.The improved algorithm increases the mAP50 of water column detection by 30.3%.On the basis of correct detection,a time backtracking algorithm is designed with mean shift to track images containing projectile-induced water column in reverse time sequence.It accurately detects a projectile-induced water column at the time of its initial appearance as well as its pixel position in images,and considerably reduces detection delay,so as to provide the support for the automatic,accurate,and real-time calculation of miss distance.展开更多
基金supported by the National Natural Science Foundation of China(51679247)。
文摘During a sea firing training,the intelligent detection of projectile-induced water column targets in a firing video is the prerequisite for and critical to the automatic calculation of miss distance,while the correct and precise calculation of miss distance is directly affected by the accuracy,false alarm rate and time delay of detection.After analyzing the characteristics of projectile-induced water columns,an accurate detection algorithm for time backtracked projectile-induced water columns based on the improved you only look once(YOLO)network is put forward.The capability and accuracy of detecting projectileinduced water column targets with the conventional YOLO network are improved by optimizing the anchor box through K-means clustering and embedding the squeeze and excitation(SE)attention module.The detection area is limited by adopting a sea-sky line detection algorithm based on gray level co-occurrence matrix(GLCM),so as to effectively eliminate such disturbances as ocean waves and ship wakes,and lower the false alarm rate of projectile-induced water column detection.The improved algorithm increases the mAP50 of water column detection by 30.3%.On the basis of correct detection,a time backtracking algorithm is designed with mean shift to track images containing projectile-induced water column in reverse time sequence.It accurately detects a projectile-induced water column at the time of its initial appearance as well as its pixel position in images,and considerably reduces detection delay,so as to provide the support for the automatic,accurate,and real-time calculation of miss distance.