Compared with the side-looking Synthetic Aperture Radar (SAR), the flexible beampointing of squint SAR makes great application value. This paper derives the image signature of the ground moving target after the proces...Compared with the side-looking Synthetic Aperture Radar (SAR), the flexible beampointing of squint SAR makes great application value. This paper derives the image signature of the ground moving target after the processing of Range-Doppler (RD) algorithm, the SAR signatures of ground moving targets are analyzed, including the geometry correction, the offsets and defocusing in both range and azimuth direction. Finally, computer simulation results validate its effectiveness. The research results are especially significant for moving targets detection and parameters estimation in squint mode SAR.展开更多
Ground-based synthetic aperture radar(GB-SAR) has been successfully applied to the ground deformation monitoring.However, due to the short length of the GB-SAR platform, the scope of observation is largely limited. Th...Ground-based synthetic aperture radar(GB-SAR) has been successfully applied to the ground deformation monitoring.However, due to the short length of the GB-SAR platform, the scope of observation is largely limited. The practical applications drive us to make improvements on the conventional linear rail GB-SAR system in order to achieve larger field imaging. First, a turntable is utilized to support the rotational movement of the radar.Next, a series of high-squint scanning is performed with multiple squint angles. Further, the high squint modulation phase of the echo data is eliminated. Then, a new multi-angle imaging method is performed in the wave number domain to expand the field of view. Simulation and real experiments verify the effectiveness of this method.展开更多
A compact wideband microstrip array antenna with a squint beam is introduced without the matched load. Its measured beam is at 10° offset to the broadside with a measured gain of 12 dB at 10 GHz. The measured imp...A compact wideband microstrip array antenna with a squint beam is introduced without the matched load. Its measured beam is at 10° offset to the broadside with a measured gain of 12 dB at 10 GHz. The measured impedance bandwidth (voltage standing wave ratio (VSWR)≤2) is over 16%, which agrees well with the simulated one. It is a low-cost wideband design with compact simple structure, suited for military and commercial application.展开更多
This paper investigates a novel approach based on the deramping technique for squinted sliding spotlight Synthetic Aperture Radar (SAR) imaging to resolve the azimuth spectrum aliasing problem. First of all, the prope...This paper investigates a novel approach based on the deramping technique for squinted sliding spotlight Synthetic Aperture Radar (SAR) imaging to resolve the azimuth spectrum aliasing problem. First of all, the properties of the azimuth spectrum and the squint angle impacts on the azimuth spectrum aliasing problem are analyzed. Based on the analysis result, an operation of filtering is added to the azimuth preprocessing step of traditional Two-Step Focusing Approach (TSPA) to resolve the azimuth folding problem and remove the influence of the squint angle on the azimuth spectrum aliasing problem. Then, a modified Range Migration Algorithm (RMA) is performed to obtain the precise focused image. Furthermore, the focused SAR image folding problem of traditional TSPA is illuminated in this paper. An azimuth post-processing step is proposed to unfold the aliased SAR image. Simulation experiment results prove that the proposed approach can solve the spectrum aliasing problem and process squinted sliding spotlight data efficiently.展开更多
In this paper a millimeter-wave (MMW) squint indirect holographic method is presented, which is suitable for imaging with a large field-of-view. The proposed system employs the squint operation mode to remove the ba...In this paper a millimeter-wave (MMW) squint indirect holographic method is presented, which is suitable for imaging with a large field-of-view. The proposed system employs the squint operation mode to remove the background and twin- image interferences, which achieves a similar effect to off-axis holography but leaves out the large-aperture quasi-optical component. The translational scanning manner enables a large field of view and ensures the image uniformity, which is difficult to realize in off-axis holography. In addition, a corresponding imaging algorithm for the presented scheme is developed to reconstruct the image from the recorded hologram. Some imaging results on typical objects, obtained with electromagnetic simulation, demonstrate good performance of the imaging scheme and validate the effectiveness of the image reconstruction algorithm.展开更多
Airborne squint side-looking strip imaging mode SAR has the advantages of better flexibility and larger field in applications than the classic side-looking mode SAR. Because of the large range migration and serious ra...Airborne squint side-looking strip imaging mode SAR has the advantages of better flexibility and larger field in applications than the classic side-looking mode SAR. Because of the large range migration and serious range-azimuth coupling terms, the imaging processing of squint mode SAR is a full two-dimensional (2-D) phenomenon. In this paper, different algorithms, which can be used for the imaging processing of squint mode SAR, are compared with each other in terms of their focusing quality and their ability to handle the large range migration of the squint side-looking mode SAR. And their abilities of real-time imaging are also discussed. The algorithms contained here are 2-D FFT method, fast polynomial transform(FPT) method, and the direct correcting method based on range-Doppler focusing algorithms. Other new methods are also discussed here briefly.展开更多
Nowadays the side-looking SAR echo data can be obtained easily from the commercial channel, while that of other SAR imaging modes such as squint, spotlight are difficult to be acquired. This paper presents a new schem...Nowadays the side-looking SAR echo data can be obtained easily from the commercial channel, while that of other SAR imaging modes such as squint, spotlight are difficult to be acquired. This paper presents a new scheme to transform the side-looking returns to squint ones, in a direct and an indirect approach respectively. Direct transformation uses the data with a wide azimuth beam angle. The maximum of the required squint angle is limited under several degrees. Squint data under indirect transformation can be obtained by adding a platform velocity along slant range according to the required squint angles. Then the squint data is determined by the angle between the new forward velocity and line-of-sight direction. This method results in higher squint angle compared with the first one. Verification shows the feasibility of these approaches with illustration of side-looking E-SAR raw data processing. The future work will be on the precise Doppler centroid estimation and effective imaging algorithm development.展开更多
Aiming at the interferometric inverse synthetic aperture radar (InlSAR) imaging in the presence of squint, we investigate the influence of squint on the InlSAR imaging. First, coupling of the squint additive phase a...Aiming at the interferometric inverse synthetic aperture radar (InlSAR) imaging in the presence of squint, we investigate the influence of squint on the InlSAR imaging. First, coupling of the squint additive phase and the target azimuth/altitude coordinates to be solved may make the solution more difficult. Second, the squint angle may lead to estimation error of the vertical coordinates and distortion of the ultimate image. Traditional InlSAR imaging algorithms can not solve the above two problems effectively, so we propose a new method which combines the nonlinear least square (NLS) and coordinates transform (CT) to estimate the target coordinates, and a three-dimensional (3-D) image consistent with the real target is obtained accordingly. Simulations show that the proposed method is effective for the squint-mode InlSAR imaging.展开更多
An ultra-massive phased array can be deployed in high-throughput millimeter-wave(mmWave)communication systems to increase the transmission distance.However,when the signal bandwidth is large,the antenna array response...An ultra-massive phased array can be deployed in high-throughput millimeter-wave(mmWave)communication systems to increase the transmission distance.However,when the signal bandwidth is large,the antenna array response changes with the frequency,causing beam squint.In this paper,we investigate the beam squint effect on a high-throughput mmWave communication system with the single-carrier frequency-domain equalization transmission scheme.Specifically,we first view analog beamforming and the physical channel as a spatial equivalent channel.The characteristics of the spatial equivalent channel are analyzed which behaves like frequency-selective fading.To eliminate the deep fading points in the spatial equivalent channel,an advanced analog beamforming method is proposed based on the Zadoff-Chu(ZC)sequence.Then,the low-complexity linear zero-forcing and minimum mean squared error equalizers are considered at the receiver.Simulation results indicate that the proposed ZC-based analog beamforming method can effectively mitigate the performance loss by the beam squint.展开更多
为了应对车载毫米波雷达大斜视成像困难的问题,本文提出一种改进的极坐标格式算法(Polar Format Algorithm,PFA)对条带车载毫米波雷达斜视回波进行基于子孔径拼接的成像。该算法从条带数据与聚束数据的特点出发,将全孔径回波划分为子孔...为了应对车载毫米波雷达大斜视成像困难的问题,本文提出一种改进的极坐标格式算法(Polar Format Algorithm,PFA)对条带车载毫米波雷达斜视回波进行基于子孔径拼接的成像。该算法从条带数据与聚束数据的特点出发,将全孔径回波划分为子孔径,利用PFA处理子孔径数据。由于PFA存在波前弯曲误差,子图像不能直接拼接,因此对每一幅子图像进行几何失真校正。同时,以重叠子孔径的划分方式保证成像结果的高分辨率。最后截取子图像进行拼接得到条带SAR成像结果。所提方法解决了车载毫米波雷达大斜视情况下两维耦合严重的问题。通过对点目标和实测数据的仿真与分析验证了所提方法的有效性。展开更多
基金Supported by the National Natural Science Foundation of China (No. 61102110)Natural Science Foundation of Hebei Province (No. F2010001285, F2012203180)
文摘Compared with the side-looking Synthetic Aperture Radar (SAR), the flexible beampointing of squint SAR makes great application value. This paper derives the image signature of the ground moving target after the processing of Range-Doppler (RD) algorithm, the SAR signatures of ground moving targets are analyzed, including the geometry correction, the offsets and defocusing in both range and azimuth direction. Finally, computer simulation results validate its effectiveness. The research results are especially significant for moving targets detection and parameters estimation in squint mode SAR.
基金supported by the National Natural Science Foundation of China(61801007)the Beijing Natural Science Foundation(4194075)。
文摘Ground-based synthetic aperture radar(GB-SAR) has been successfully applied to the ground deformation monitoring.However, due to the short length of the GB-SAR platform, the scope of observation is largely limited. The practical applications drive us to make improvements on the conventional linear rail GB-SAR system in order to achieve larger field imaging. First, a turntable is utilized to support the rotational movement of the radar.Next, a series of high-squint scanning is performed with multiple squint angles. Further, the high squint modulation phase of the echo data is eliminated. Then, a new multi-angle imaging method is performed in the wave number domain to expand the field of view. Simulation and real experiments verify the effectiveness of this method.
基金Project supported by the National Natural Science Foundation of China (Grant No.60871030)the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘A compact wideband microstrip array antenna with a squint beam is introduced without the matched load. Its measured beam is at 10° offset to the broadside with a measured gain of 12 dB at 10 GHz. The measured impedance bandwidth (voltage standing wave ratio (VSWR)≤2) is over 16%, which agrees well with the simulated one. It is a low-cost wideband design with compact simple structure, suited for military and commercial application.
文摘This paper investigates a novel approach based on the deramping technique for squinted sliding spotlight Synthetic Aperture Radar (SAR) imaging to resolve the azimuth spectrum aliasing problem. First of all, the properties of the azimuth spectrum and the squint angle impacts on the azimuth spectrum aliasing problem are analyzed. Based on the analysis result, an operation of filtering is added to the azimuth preprocessing step of traditional Two-Step Focusing Approach (TSPA) to resolve the azimuth folding problem and remove the influence of the squint angle on the azimuth spectrum aliasing problem. Then, a modified Range Migration Algorithm (RMA) is performed to obtain the precise focused image. Furthermore, the focused SAR image folding problem of traditional TSPA is illuminated in this paper. An azimuth post-processing step is proposed to unfold the aliased SAR image. Simulation experiment results prove that the proposed approach can solve the spectrum aliasing problem and process squinted sliding spotlight data efficiently.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11174280,60990323,and 60990320)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.YYYJ-1123)
文摘In this paper a millimeter-wave (MMW) squint indirect holographic method is presented, which is suitable for imaging with a large field-of-view. The proposed system employs the squint operation mode to remove the background and twin- image interferences, which achieves a similar effect to off-axis holography but leaves out the large-aperture quasi-optical component. The translational scanning manner enables a large field of view and ensures the image uniformity, which is difficult to realize in off-axis holography. In addition, a corresponding imaging algorithm for the presented scheme is developed to reconstruct the image from the recorded hologram. Some imaging results on typical objects, obtained with electromagnetic simulation, demonstrate good performance of the imaging scheme and validate the effectiveness of the image reconstruction algorithm.
文摘Airborne squint side-looking strip imaging mode SAR has the advantages of better flexibility and larger field in applications than the classic side-looking mode SAR. Because of the large range migration and serious range-azimuth coupling terms, the imaging processing of squint mode SAR is a full two-dimensional (2-D) phenomenon. In this paper, different algorithms, which can be used for the imaging processing of squint mode SAR, are compared with each other in terms of their focusing quality and their ability to handle the large range migration of the squint side-looking mode SAR. And their abilities of real-time imaging are also discussed. The algorithms contained here are 2-D FFT method, fast polynomial transform(FPT) method, and the direct correcting method based on range-Doppler focusing algorithms. Other new methods are also discussed here briefly.
文摘Nowadays the side-looking SAR echo data can be obtained easily from the commercial channel, while that of other SAR imaging modes such as squint, spotlight are difficult to be acquired. This paper presents a new scheme to transform the side-looking returns to squint ones, in a direct and an indirect approach respectively. Direct transformation uses the data with a wide azimuth beam angle. The maximum of the required squint angle is limited under several degrees. Squint data under indirect transformation can be obtained by adding a platform velocity along slant range according to the required squint angles. Then the squint data is determined by the angle between the new forward velocity and line-of-sight direction. This method results in higher squint angle compared with the first one. Verification shows the feasibility of these approaches with illustration of side-looking E-SAR raw data processing. The future work will be on the precise Doppler centroid estimation and effective imaging algorithm development.
基金supported by the China National Funds for Distinguished Young Scientists (Grant No.61025006)
文摘Aiming at the interferometric inverse synthetic aperture radar (InlSAR) imaging in the presence of squint, we investigate the influence of squint on the InlSAR imaging. First, coupling of the squint additive phase and the target azimuth/altitude coordinates to be solved may make the solution more difficult. Second, the squint angle may lead to estimation error of the vertical coordinates and distortion of the ultimate image. Traditional InlSAR imaging algorithms can not solve the above two problems effectively, so we propose a new method which combines the nonlinear least square (NLS) and coordinates transform (CT) to estimate the target coordinates, and a three-dimensional (3-D) image consistent with the real target is obtained accordingly. Simulations show that the proposed method is effective for the squint-mode InlSAR imaging.
基金Project supported by the National Key R&D Program of China(No.2020YFB1805001)the National Natural Science Foundation of China(No.61831004)the Defense Industrial Technology Development Program,China(No.JCKY2016204A603)。
文摘An ultra-massive phased array can be deployed in high-throughput millimeter-wave(mmWave)communication systems to increase the transmission distance.However,when the signal bandwidth is large,the antenna array response changes with the frequency,causing beam squint.In this paper,we investigate the beam squint effect on a high-throughput mmWave communication system with the single-carrier frequency-domain equalization transmission scheme.Specifically,we first view analog beamforming and the physical channel as a spatial equivalent channel.The characteristics of the spatial equivalent channel are analyzed which behaves like frequency-selective fading.To eliminate the deep fading points in the spatial equivalent channel,an advanced analog beamforming method is proposed based on the Zadoff-Chu(ZC)sequence.Then,the low-complexity linear zero-forcing and minimum mean squared error equalizers are considered at the receiver.Simulation results indicate that the proposed ZC-based analog beamforming method can effectively mitigate the performance loss by the beam squint.
文摘为了应对车载毫米波雷达大斜视成像困难的问题,本文提出一种改进的极坐标格式算法(Polar Format Algorithm,PFA)对条带车载毫米波雷达斜视回波进行基于子孔径拼接的成像。该算法从条带数据与聚束数据的特点出发,将全孔径回波划分为子孔径,利用PFA处理子孔径数据。由于PFA存在波前弯曲误差,子图像不能直接拼接,因此对每一幅子图像进行几何失真校正。同时,以重叠子孔径的划分方式保证成像结果的高分辨率。最后截取子图像进行拼接得到条带SAR成像结果。所提方法解决了车载毫米波雷达大斜视情况下两维耦合严重的问题。通过对点目标和实测数据的仿真与分析验证了所提方法的有效性。