Nowadays the side-looking SAR echo data can be obtained easily from the commercial channel, while that of other SAR imaging modes such as squint, spotlight are difficult to be acquired. This paper presents a new schem...Nowadays the side-looking SAR echo data can be obtained easily from the commercial channel, while that of other SAR imaging modes such as squint, spotlight are difficult to be acquired. This paper presents a new scheme to transform the side-looking returns to squint ones, in a direct and an indirect approach respectively. Direct transformation uses the data with a wide azimuth beam angle. The maximum of the required squint angle is limited under several degrees. Squint data under indirect transformation can be obtained by adding a platform velocity along slant range according to the required squint angles. Then the squint data is determined by the angle between the new forward velocity and line-of-sight direction. This method results in higher squint angle compared with the first one. Verification shows the feasibility of these approaches with illustration of side-looking E-SAR raw data processing. The future work will be on the precise Doppler centroid estimation and effective imaging algorithm development.展开更多
The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-...The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-track direction, and three virtual phase centers will be obtained through one-input and three-output. These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution. Because the cross-track array is short, the cross-track resolution is low. When the system works in side-looking mode, the cross-track resolution and height resolution will be coupling, and the low cross-track resolution will partly be transformed into the height uncertainty. The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array. In order to suppress the high cross-track sidelobes, a weighting preprocessing method is proposed. The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method. And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt.展开更多
Compared with the side-looking Synthetic Aperture Radar (SAR), the flexible beampointing of squint SAR makes great application value. This paper derives the image signature of the ground moving target after the proces...Compared with the side-looking Synthetic Aperture Radar (SAR), the flexible beampointing of squint SAR makes great application value. This paper derives the image signature of the ground moving target after the processing of Range-Doppler (RD) algorithm, the SAR signatures of ground moving targets are analyzed, including the geometry correction, the offsets and defocusing in both range and azimuth direction. Finally, computer simulation results validate its effectiveness. The research results are especially significant for moving targets detection and parameters estimation in squint mode SAR.展开更多
A compact wideband microstrip array antenna with a squint beam is introduced without the matched load. Its measured beam is at 10° offset to the broadside with a measured gain of 12 dB at 10 GHz. The measured imp...A compact wideband microstrip array antenna with a squint beam is introduced without the matched load. Its measured beam is at 10° offset to the broadside with a measured gain of 12 dB at 10 GHz. The measured impedance bandwidth (voltage standing wave ratio (VSWR)≤2) is over 16%, which agrees well with the simulated one. It is a low-cost wideband design with compact simple structure, suited for military and commercial application.展开更多
Ground-based synthetic aperture radar(GB-SAR) has been successfully applied to the ground deformation monitoring.However, due to the short length of the GB-SAR platform, the scope of observation is largely limited. Th...Ground-based synthetic aperture radar(GB-SAR) has been successfully applied to the ground deformation monitoring.However, due to the short length of the GB-SAR platform, the scope of observation is largely limited. The practical applications drive us to make improvements on the conventional linear rail GB-SAR system in order to achieve larger field imaging. First, a turntable is utilized to support the rotational movement of the radar.Next, a series of high-squint scanning is performed with multiple squint angles. Further, the high squint modulation phase of the echo data is eliminated. Then, a new multi-angle imaging method is performed in the wave number domain to expand the field of view. Simulation and real experiments verify the effectiveness of this method.展开更多
This paper investigates a novel approach based on the deramping technique for squinted sliding spotlight Synthetic Aperture Radar (SAR) imaging to resolve the azimuth spectrum aliasing problem. First of all, the prope...This paper investigates a novel approach based on the deramping technique for squinted sliding spotlight Synthetic Aperture Radar (SAR) imaging to resolve the azimuth spectrum aliasing problem. First of all, the properties of the azimuth spectrum and the squint angle impacts on the azimuth spectrum aliasing problem are analyzed. Based on the analysis result, an operation of filtering is added to the azimuth preprocessing step of traditional Two-Step Focusing Approach (TSPA) to resolve the azimuth folding problem and remove the influence of the squint angle on the azimuth spectrum aliasing problem. Then, a modified Range Migration Algorithm (RMA) is performed to obtain the precise focused image. Furthermore, the focused SAR image folding problem of traditional TSPA is illuminated in this paper. An azimuth post-processing step is proposed to unfold the aliased SAR image. Simulation experiment results prove that the proposed approach can solve the spectrum aliasing problem and process squinted sliding spotlight data efficiently.展开更多
Airborne squint side-looking strip imaging mode SAR has the advantages of better flexibility and larger field in applications than the classic side-looking mode SAR. Because of the large range migration and serious ra...Airborne squint side-looking strip imaging mode SAR has the advantages of better flexibility and larger field in applications than the classic side-looking mode SAR. Because of the large range migration and serious range-azimuth coupling terms, the imaging processing of squint mode SAR is a full two-dimensional (2-D) phenomenon. In this paper, different algorithms, which can be used for the imaging processing of squint mode SAR, are compared with each other in terms of their focusing quality and their ability to handle the large range migration of the squint side-looking mode SAR. And their abilities of real-time imaging are also discussed. The algorithms contained here are 2-D FFT method, fast polynomial transform(FPT) method, and the direct correcting method based on range-Doppler focusing algorithms. Other new methods are also discussed here briefly.展开更多
In this paper a millimeter-wave (MMW) squint indirect holographic method is presented, which is suitable for imaging with a large field-of-view. The proposed system employs the squint operation mode to remove the ba...In this paper a millimeter-wave (MMW) squint indirect holographic method is presented, which is suitable for imaging with a large field-of-view. The proposed system employs the squint operation mode to remove the background and twin- image interferences, which achieves a similar effect to off-axis holography but leaves out the large-aperture quasi-optical component. The translational scanning manner enables a large field of view and ensures the image uniformity, which is difficult to realize in off-axis holography. In addition, a corresponding imaging algorithm for the presented scheme is developed to reconstruct the image from the recorded hologram. Some imaging results on typical objects, obtained with electromagnetic simulation, demonstrate good performance of the imaging scheme and validate the effectiveness of the image reconstruction algorithm.展开更多
文摘Nowadays the side-looking SAR echo data can be obtained easily from the commercial channel, while that of other SAR imaging modes such as squint, spotlight are difficult to be acquired. This paper presents a new scheme to transform the side-looking returns to squint ones, in a direct and an indirect approach respectively. Direct transformation uses the data with a wide azimuth beam angle. The maximum of the required squint angle is limited under several degrees. Squint data under indirect transformation can be obtained by adding a platform velocity along slant range according to the required squint angles. Then the squint data is determined by the angle between the new forward velocity and line-of-sight direction. This method results in higher squint angle compared with the first one. Verification shows the feasibility of these approaches with illustration of side-looking E-SAR raw data processing. The future work will be on the precise Doppler centroid estimation and effective imaging algorithm development.
基金Supported by the National Basic Research Program (973) of China (No. 2009CB72400)
文摘The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-track direction, and three virtual phase centers will be obtained through one-input and three-output. These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution. Because the cross-track array is short, the cross-track resolution is low. When the system works in side-looking mode, the cross-track resolution and height resolution will be coupling, and the low cross-track resolution will partly be transformed into the height uncertainty. The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array. In order to suppress the high cross-track sidelobes, a weighting preprocessing method is proposed. The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method. And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt.
基金Supported by the National Natural Science Foundation of China (No. 61102110)Natural Science Foundation of Hebei Province (No. F2010001285, F2012203180)
文摘Compared with the side-looking Synthetic Aperture Radar (SAR), the flexible beampointing of squint SAR makes great application value. This paper derives the image signature of the ground moving target after the processing of Range-Doppler (RD) algorithm, the SAR signatures of ground moving targets are analyzed, including the geometry correction, the offsets and defocusing in both range and azimuth direction. Finally, computer simulation results validate its effectiveness. The research results are especially significant for moving targets detection and parameters estimation in squint mode SAR.
基金Project supported by the National Natural Science Foundation of China (Grant No.60871030)the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘A compact wideband microstrip array antenna with a squint beam is introduced without the matched load. Its measured beam is at 10° offset to the broadside with a measured gain of 12 dB at 10 GHz. The measured impedance bandwidth (voltage standing wave ratio (VSWR)≤2) is over 16%, which agrees well with the simulated one. It is a low-cost wideband design with compact simple structure, suited for military and commercial application.
基金supported by the National Natural Science Foundation of China(61801007)the Beijing Natural Science Foundation(4194075)。
文摘Ground-based synthetic aperture radar(GB-SAR) has been successfully applied to the ground deformation monitoring.However, due to the short length of the GB-SAR platform, the scope of observation is largely limited. The practical applications drive us to make improvements on the conventional linear rail GB-SAR system in order to achieve larger field imaging. First, a turntable is utilized to support the rotational movement of the radar.Next, a series of high-squint scanning is performed with multiple squint angles. Further, the high squint modulation phase of the echo data is eliminated. Then, a new multi-angle imaging method is performed in the wave number domain to expand the field of view. Simulation and real experiments verify the effectiveness of this method.
文摘This paper investigates a novel approach based on the deramping technique for squinted sliding spotlight Synthetic Aperture Radar (SAR) imaging to resolve the azimuth spectrum aliasing problem. First of all, the properties of the azimuth spectrum and the squint angle impacts on the azimuth spectrum aliasing problem are analyzed. Based on the analysis result, an operation of filtering is added to the azimuth preprocessing step of traditional Two-Step Focusing Approach (TSPA) to resolve the azimuth folding problem and remove the influence of the squint angle on the azimuth spectrum aliasing problem. Then, a modified Range Migration Algorithm (RMA) is performed to obtain the precise focused image. Furthermore, the focused SAR image folding problem of traditional TSPA is illuminated in this paper. An azimuth post-processing step is proposed to unfold the aliased SAR image. Simulation experiment results prove that the proposed approach can solve the spectrum aliasing problem and process squinted sliding spotlight data efficiently.
文摘Airborne squint side-looking strip imaging mode SAR has the advantages of better flexibility and larger field in applications than the classic side-looking mode SAR. Because of the large range migration and serious range-azimuth coupling terms, the imaging processing of squint mode SAR is a full two-dimensional (2-D) phenomenon. In this paper, different algorithms, which can be used for the imaging processing of squint mode SAR, are compared with each other in terms of their focusing quality and their ability to handle the large range migration of the squint side-looking mode SAR. And their abilities of real-time imaging are also discussed. The algorithms contained here are 2-D FFT method, fast polynomial transform(FPT) method, and the direct correcting method based on range-Doppler focusing algorithms. Other new methods are also discussed here briefly.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11174280,60990323,and 60990320)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.YYYJ-1123)
文摘In this paper a millimeter-wave (MMW) squint indirect holographic method is presented, which is suitable for imaging with a large field-of-view. The proposed system employs the squint operation mode to remove the background and twin- image interferences, which achieves a similar effect to off-axis holography but leaves out the large-aperture quasi-optical component. The translational scanning manner enables a large field of view and ensures the image uniformity, which is difficult to realize in off-axis holography. In addition, a corresponding imaging algorithm for the presented scheme is developed to reconstruct the image from the recorded hologram. Some imaging results on typical objects, obtained with electromagnetic simulation, demonstrate good performance of the imaging scheme and validate the effectiveness of the image reconstruction algorithm.