期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Swimming velocity of spherical squirmers in a square tube at finite fluid inertia
1
作者 Tongxiao JIANG Deming NIE Jianzhong LIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1481-1498,共18页
The three-dimensional lattice Boltzmann method(LBM)is used to simulate the motion of a spherical squirmer in a square tube,and the steady motion velocity of a squirmer with different Reynolds numbers(Re,ranging from 0... The three-dimensional lattice Boltzmann method(LBM)is used to simulate the motion of a spherical squirmer in a square tube,and the steady motion velocity of a squirmer with different Reynolds numbers(Re,ranging from 0.1 to 2)and swimming types is investigated and analyzed to better understand the swimming characteristics of microorganisms in different environments.First,as the Reynolds number increases,the effect of the inertial forces becomes significant,disrupting the squirmer's ability to maintain its theoretical velocity.Specifically,as the Reynolds number increases,the structure of the flow field around the squirmer changes,affecting its velocity of motion.Notably,the swimming velocity of the squirmer exhibits a quadratic relationship with the type of swimming and the Reynolds number.Second,the narrow tube exerts a significant inhibitory effect on the squirmer motion.In addition,although chirality does not directly affect the swimming velocity of the squirmer,it can indirectly affect the velocity by changing its motion mode. 展开更多
关键词 spherical squirmer swimming characteristics swimming velocity fow structure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部