期刊文献+
共找到1,441篇文章
< 1 2 73 >
每页显示 20 50 100
Transient response of doubly-curved bio-inspired composite shells resting on viscoelastic foundation subject to blast load using improved first-order shear theory and isogeometric approach 被引量:1
1
作者 Thuy Tran Thi Thu Tu Nguyen Anh +1 位作者 Hue Nguyen Thi Hong Nguyen Thi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期171-193,共23页
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties... Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures. 展开更多
关键词 blast load Modified first-order shear theory Biological composite structures
下载PDF
Dynamic caustics test of blast load impact on neighboring different cross-section roadways 被引量:6
2
作者 Guo Dongming Zhou Baowei +2 位作者 Liu Kang Yang Renshu Yan Pengyang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期803-808,共6页
Using digital laser dynamic caustics experimental system and conducting simulation experiment researched the influence rule of blasting excavation of a new roadway on neighboring existed different cross-section roadwa... Using digital laser dynamic caustics experimental system and conducting simulation experiment researched the influence rule of blasting excavation of a new roadway on neighboring existed different cross-section roadways. The experimental results show that the influence of blast load on adjacent roadway has a good relationship with the cross-section of roadway. The expansion distance of precrack existed in circular, arch-wall, rectangular roadway is respectively 1.76, 1.61 and 0 cm under blast load.At the same time, the direct-blast side of rectangular roadway has more obvious damage compared with circular and arch-wall roadway. It explains that plane reflects more stress wave than arc, so that it exerts more tensile failure in the direct-blast side, which leads to less stress wave diffracting to the precrack in the back-blast side. When the precrack extends, higher value dynamic stress intensity factor in circular roadway works longer than that of arch-wall roadway. Indirectly, it explains that plane's weakening function on stress wave is significantly stronger than arc. Stress wave brings about self-evident influence on the upper and bottom endpoints of the rectangular roadway, and it respectively extends 1.03, 2.06 cm along the line link direction of the center of the blasthole and the upper and bottom endpoints on the right wall. 展开更多
关键词 Dynamic caustics blast load Different cross-section roadways Precrack Dynamic stress intensity factor
下载PDF
Numerical Analysis of Structural Progressive Collapse to Blast Loads 被引量:6
3
作者 HAO Hong WU Chengqing +1 位作者 LI Zhongxian ABDULLAH A K 《Transactions of Tianjin University》 EI CAS 2006年第B09期31-34,共4页
After the progressive collapse of Ronan Point apartment in UK in 1968, intensive research effort had been spent on developing guidelines for design of new or strengthening the existing structures to prevent progressiv... After the progressive collapse of Ronan Point apartment in UK in 1968, intensive research effort had been spent on developing guidelines for design of new or strengthening the existing structures to prevent progressive collapse. However, only very few building design codes provide some rather general guidance, no detailed design requirement is given. Progressive collapse of the Alfred P. Murrah Federal building in Oklahoma City and the World Trade Centre (WTC) sparked again tremendous research interest on progressive collapse of structures. Recently, US Department of Defence (DoD) and US General Service Administration (GSA) issued guidelines for structure progressive collapse analysis. These two guidelines are most commonly used, but their accuracy is not known. This paper presents numerical analysis of progressive collapse of an example frame structure to blast loads. The DoD and GSA procedures are also used to analyse the same example structure. Numerical results are compared and discussed. The accuracy and the applicability of the two design guidelines are evaluated. 展开更多
关键词 progressive collapse blast loads damage mechanics NUMERICAL
下载PDF
Methods for Progressive Collapse Analysis of Building Structures Under Blast and Impact Loads 被引量:5
4
作者 李忠献 师燕超 《Transactions of Tianjin University》 EI CAS 2008年第5期329-339,共11页
Progressive collapse of building structures under blast and impact loads has attracted great attention all over the world. Progressive collapse analysis is essential for an economic and safe design of building structu... Progressive collapse of building structures under blast and impact loads has attracted great attention all over the world. Progressive collapse analysis is essential for an economic and safe design of building structures against progressive collapse to blast and impact loads. Because of the catastrophic nature of progressive collapse and the potentially high cost of constructing or retrofitting buildings to resist it, it is imperative that the progressive collapse analysis methods be reliable. For engineers, their methodology to carry out progressive collapse evaluation need not only be accurate and concise, but also be easily used and works fast. Thus, many researchers have been spending lots of effort in developing reliable, efficient and straightforward progressive collapse analysis methods recently. In the present paper, current progressive collapse analysis methods available in the literature are reviewed. Their suitability, applicability and reliability are discussed. Our recent proposed new method for progressive collapse analysis of reinforced concrete frames under blast loads is also introduced. 展开更多
关键词 progressive collapse analysis building structures blast load impact load
下载PDF
Pressure-impulse diagram with multiple failure modes of one-way reinforced concrete slab under blast loading using SDOF method 被引量:9
5
作者 汪维 张舵 +2 位作者 卢芳云 汤福静 王松川 《Journal of Central South University》 SCIE EI CAS 2013年第2期510-519,共10页
Two loosely coupled single degree of freedom (SDOF) systems were used to model the flexural and direct shear responses of one-way reinforced concrete slabs subjected to explosive loading. Blast test results show that ... Two loosely coupled single degree of freedom (SDOF) systems were used to model the flexural and direct shear responses of one-way reinforced concrete slabs subjected to explosive loading. Blast test results show that the SDOF systems are accurate in predicting the failure mode of the slab under blast loads by incorporating the effects of the strain rate effect caused by rapid load application. Based on different damage criteria, pressure-impulse (P-I) diagrams of the two failure modes were analyzed with the SDOF systems. The effects of span length, concrete strength, and reinforcement ratio of the slab on the P-I diagram were also investigated. Results indicate that a slab tends to fail in direct shear mode when it is of a smaller span length and tends to fail in flexure mode when it is of a larger span length. With the increase of the concrete strength or reinforced ratio, both the flexure and shear capacity increase. Based on numerical results, a simplified method and a semi analytical equation for deriving the P-I diagram are proposed for different failure modes and damage levels. 展开更多
关键词 blast load failure mode pressure impulse diagram One-way reinforced concrete slab single degree of freedom
下载PDF
Strength and Toughness of Steel Fibre Reinforced Reactive Powder Concrete Under Blast Loading 被引量:3
6
作者 KUZNETSOV Valerian A REBENTROST Mark WASCHL John 《Transactions of Tianjin University》 EI CAS 2006年第B09期70-74,共5页
The blast resistance of structures used in buildings needs to be investigated due to the increased threat of a terrorist attack. The damage done by Composition B or Powergel to steel fibre reinforced reactive powder c... The blast resistance of structures used in buildings needs to be investigated due to the increased threat of a terrorist attack. The damage done by Composition B or Powergel to steel fibre reinforced reactive powder concrete (SFRPC) panels and ordinary reinforced concrete (RC) panels of equivalent static flexural strength is compared. A 0. 5 kg charge was detonated at a distance of 0. 1 m from the 1. 3 m × 1. 0 m × 0. 1 m (thick) panels, which were simply supported and spaning 1.3 m. Dynamic displacement measurements, high-speed video recording and visual examination of the panels for spall and breach were undertaken. The SFRPC panels withstood the bare charge blast better than the reinforced ordinary concrete panels. Neither type of panel was breached using a O. 5 kg charge, The RC panel exhibited more spalling when Composition B was used. Under successive Composition B loading conditions, the RC panel was breached. In comparison the SFRPC panel was not breached. Exposure to fragmenting charge loading conditions confirmed these performance differences between the SFRPC panel and the reinforced ordinary concrete panel. 展开更多
关键词 steel fibre reinforced reactive powder concrete blast loading SPALLING explosive blast loading
下载PDF
Determination method of mesh size for numerical simulation of blast load in near-ground detonation
7
作者 Doudou Si Zuanfeng Pan Haipeng Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期111-125,共15页
In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommend... In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommended to determine the blast load on the structures via numerical simulation. Since the mesh size of the numerical model highly depends on the explosion scenario, there is no generally applicable approach for the mesh size selection. An efficient method to determine the mesh size of the numerical model of near-ground detonation based on explosion scenarios is proposed in this study. The effect of mesh size on the propagation of blast wave under different explosive weights was studied, and the correlations between the mesh size effect and the charge weight or the scaled distance was described. Based on the principle of the finite element method and Hopkinson-Cranz scaling law, a mesh size measurement unit related to the explosive weight was proposed as the criterion for determining the mesh size in the numerical simulation. Finally, the applicability of the method proposed in this paper was verified by comparing the results from numerical simulation and the explosion tests and was verified in AUTODYN. 展开更多
关键词 blast load Mesh size effect Numerical simulation Scaled mesh size VERIFICATION
下载PDF
An isogeometric analysis approach for dynamic response of doubly-curved magneto electro elastic composite shallow shell subjected to blast loading
8
作者 Pham Hoang Tu Tran Van Ke +1 位作者 Vu Khac Trai Le Hoai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期159-180,共22页
For the first time, the isogeometric analysis(IGA) approach is used to model and analyze free and forced vibrations of doubly-curved magneto-electro-elastic(MEE) composite shallow shell resting on the visco-Pasternak ... For the first time, the isogeometric analysis(IGA) approach is used to model and analyze free and forced vibrations of doubly-curved magneto-electro-elastic(MEE) composite shallow shell resting on the visco-Pasternak foundation in a hygro-temperature environment. The doubly-curved MEE shallow shell types include spherical shallow shell, cylindrical shallow shell, saddle shallow shell, and elliptical shallow shell subjected to blast load are investigated. The Maxwell equation and electromagnetic boundary conditions are used to determine the vary of the electric and magnetic potentials. The MEE shallow shell's equations of motion are derived from Hamilton's principle and refined higher-order shear theory. Then, the IGA method is used to derive the laws of natural frequencies and dynamic responses of the shell under various boundary conditions. The accuracy of the model and method is verified through reliable numerical comparisons. Aside from this, the impact of the input parameters on the free and forced vibration of the doubly-curved MEE shallow shell is examined in detail. These results may be useful in the design and manufacture of military structures such as warships, fighter aircraft, drones and missiles. 展开更多
关键词 IGA approach Free and forced vibration Doubly-curved MEE shallow shell blast load
下载PDF
Transient responses of double-curved sandwich two-layer shells resting on Kerr's foundations with laminated three-phase polymer/GNP/fiber surface and auxetic honeycomb core subjected to the blast load
9
作者 Nguyen Thi Hai Van Thi Hong Nguyen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期222-247,共26页
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib... This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads. 展开更多
关键词 blast load Two-layer shell Polymer/GNP/Fiber surface Auxetic honeycomb Shear connectors
下载PDF
Effect of Variable Concrete Strength on the Behavior of Buckling Restrained Braced Frames under Blast Load
10
作者 Oshman Charco Frank Chavarin Rais Ahmad 《Journal of Civil Engineering and Architecture》 2024年第11期530-539,共10页
BRBF(buckling restrained braced frame)is a relatively new lateral force resisting system for building structures.BRBFs are used mostly to resist seismic force due to their high ductility after yielding and the ability... BRBF(buckling restrained braced frame)is a relatively new lateral force resisting system for building structures.BRBFs are used mostly to resist seismic force due to their high ductility after yielding and the ability to absorb higher strain energy.ASCE(American Society of Civil Engineers)first permits the use of BRBFs as a single seismic force-resisting system by quantifying the seismic parameters such as response modification coefficient(R),over-strength factor(Ωo)and deflection amplification factor(Cd)for a structure built with BRBF,in their 2010 code(ASCE 7-10).But it has not been investigated how a structure built with BRBF,which is primarily designed to resist seismic force,and behaves under sudden occurrence of a blast load.This research investigates the performance of a BRBF subjected to blast loading.In other words,this paper focuses on the effect of blast loading on BRBF.The architype for this investigation is a chevron type braced frame.The frame is subjected to a short duration blast load that lasts only 21.7 mili-second(ms).Blast loading effects on the braced frame are assessed by identifying the weakest plane of failure,deformation characteristics and out of plane bending.The research investigates how the properties of the surrounding concrete,especially compressive strength,affect the overall strength of the BRBF on resisting blast loading.It is observed that the compressive strength of the surrounding concrete plays a significant role in reducing the deformation characteristics,both in-plane and out-of-plane. 展开更多
关键词 BRBF blast loading response modification coefficient(R) chevron brace
下载PDF
Simulation of the Response of Glass Window Under Blast Load
11
作者 王仲琦 宫广东 +1 位作者 张彦春 白春华 《Transactions of Tianjin University》 EI CAS 2008年第B10期504-510,共7页
In the investigation of accidental explosion scene, the damage on the glass is one of the typi-cal traces which can be used to decide the characteristic of the explosion source. To analyze the re-sponse of glass under... In the investigation of accidental explosion scene, the damage on the glass is one of the typi-cal traces which can be used to decide the characteristic of the explosion source. To analyze the re-sponse of glass under the blast load, a numerical model was developed. In the model, the brittleness glass model was adopted. A‘node release’method, which had some special merits compared with the erosion method was used to simulate the rupture of the glass In the calculation, several problems which play major role in the response of the glass were discussed. The velocity and the displacement of the glass fragment were two major factors. The numerical results are very helpful for the design and hazard assessment. 展开更多
关键词 GLAss blast load dynamic response
下载PDF
Damage Assessment for Buried Structures Against Internal Blast Load
12
作者 MA Guowei HUANG Xin LI Jianchun 《Transactions of Tianjin University》 EI CAS 2008年第5期353-357,共5页
The soil-structure interaction (SSI) decoupling is applied to simplify buried structure against internal blast load as spring effect. Shear failure, bending failure and combined failure modes are considered based on f... The soil-structure interaction (SSI) decoupling is applied to simplify buried structure against internal blast load as spring effect. Shear failure, bending failure and combined failure modes are considered based on five transverse velocity profiles for the rigid-plastic structural element. The critical equations for shear and bending failure are derived respectively. Pressureimpulse diagrams are accordingly developed to assess damage of the buried structures against internal blast load. Comparison is done to show influences of soil-structure interaction and shear-to-bending strength ratio of a structural element. A case study is conducted to show the application of damage assessment to a reinforced concrete beam element of buried structure. 展开更多
关键词 combined failure pressure-impulse diagram buried structure blast load damage assessment
下载PDF
Numerical Simulation of the Flat Ribbon Wound Explosion Containment Vessels Subjected to Internal Blast Loading
13
作者 SONG Yanze LI Zhiqiang +1 位作者 ZHAO Longmao ZHENG Jinyang 《Transactions of Tianjin University》 EI CAS 2006年第B09期223-227,共5页
In order to constitute engineering design methods of the flat ribbon wound explosion containment vessels, the dynamic response of such vessels subjected to internal explosion loading is simulated using LS-DYNA3D. Thre... In order to constitute engineering design methods of the flat ribbon wound explosion containment vessels, the dynamic response of such vessels subjected to internal explosion loading is simulated using LS-DYNA3D. Three winding angles, 10°, 15°and 20°, are considered. It is shown that among ribbon vessels investigated, the center displacement of outermost ribbons of the vessel with 10°winding angle is the smallest under the same blast loading. The response of vessels loaded in inner core is local. From the center of the cylindrical shell to the bottom cover, the maximum strain gradually decreases. The ribbons are subjected to tension in the length direction and compression in the width direction. Blasting shock energy concentrates on where is close to center section of blasting. For comparison, numerical simulation of a monobloc thick-walled explosion containment vessel is also investigated. It can be found that the biggest deformation of the flat ribbon wound explosion containment vessels is bigger than that of the monobloc thick-walled explosion containment vessel in the center section of blasting under the same TNT. Numerical results are approximately in agreement with experimental ones. It is proved that the ribbon vessels have the valuable properties of ' leak before burst at worst' compared with the monobloc vessels through numerical simulation. 展开更多
关键词 flat ribbon wound explosion containment vessels blast loading dynamic response numerical simulation
下载PDF
Capacity of surface warship's protective bulkhead subjected to blast loading 被引量:3
14
作者 彭兴宁 聂武 严波 《Journal of Marine Science and Application》 2009年第1期13-17,共5页
The protective bulkhead of the large surface warship need to be designed working in the membrane mode. In this paper, a formula is derived for calculating the plastic deformation of the protective bulkhead subjected t... The protective bulkhead of the large surface warship need to be designed working in the membrane mode. In this paper, a formula is derived for calculating the plastic deformation of the protective bulkhead subjected to blast loading by the energy method, and the ultimate capability of the protective bulkhead can be calculated. The design demand of the protective bulkhead is discussed. The calculation is compared with external experiments, which indicates that the formula is of great application value. 展开更多
关键词 protective bulkhead blast loading energy method
下载PDF
A Review of Current Researches on Blast Load Effects on Building Structures in China 被引量:32
15
作者 LI Zhongxian DU Hao BAO Chunxiao 《Transactions of Tianjin University》 EI CAS 2006年第B09期35-41,共7页
The damages of building structures subjected to multifarious explosions cause huge losses of lives and property. It is the reason why the blast resistance and explosion protection of building structures become an impo... The damages of building structures subjected to multifarious explosions cause huge losses of lives and property. It is the reason why the blast resistance and explosion protection of building structures become an important research topic in the civil engineering field all over the world. This paper provides an overview of the research work in China on blast loads effect on building structures. It includes modeling blast shock wave propagation and their effects, the dynamic responses of various building structures under blast loads and the measures to strengthen the building structures against blast loads. The paper also discusses the achievements and further work that needs be done for a better understanding of the blast loads' effects on building structures, and for deriving effective and economic techniques to design new or to strengthen existing structures. 展开更多
关键词 building structure blast load blast resistance explosion protection blast shock wave
下载PDF
Numerical Modeling of Response and Damage of Masonry Walls to Blast Loading 被引量:6
16
作者 DEEKS Andrew 《Transactions of Tianjin University》 EI CAS 2006年第B09期132-137,共6页
To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are govern... To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results. 展开更多
关键词 MASONRY blast loading FRAGMENTATION hazard level DAMAGE numerical modeling
下载PDF
Numerical investigation on free air blast loads generated from center-initiated cylindrical charges with varied aspect ratio in arbitrary orientation 被引量:5
17
作者 Chu Gao Xiang-zhen Kong +2 位作者 Qin Fang Jian Hong Yin Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1662-1678,共17页
In current guidelines, the free air blast loads(overpressure and impulse) are determined by spherical charges, although most of ordnance devices are more nearly cylindrical than spherical in geometry. This may result ... In current guidelines, the free air blast loads(overpressure and impulse) are determined by spherical charges, although most of ordnance devices are more nearly cylindrical than spherical in geometry. This may result in a great underestimation of blast loads in the near field and lead to an unsafe design.However, there is still a lack of systematic quantitative analysis of the blast loads generated from cylindrical charges. In this study, a numerical model is developed by using the hydrocode AUTODYN to investigate the influences of aspect ratio and orientation on the free air blast loads generated from center-initiated cylindrical charges. This is done by examining the pressure contours, the peak overpressures and impulses for various aspect ratios ranged from 1 to 8 and arbitrary orientation monitored along every azimuth angle with an interval of 5°. To characterize the distribution patterns of blast loads,three regions, i.e., the axial region, the vertex region and the radial region are identified, and the propagation of blast waves in each region is analyzed in detail. The complexity of blast loads of cylindrical charges is found to result from the bridge wave and its interaction with primary waves. Several empirical formulas are presented based on curve-fitting the numerical data, including the orientation where the maximum peak overpressure emerges, the critical scaled distance beyond which the charge shape effect could be neglected and blast loads with varied aspect ratio in arbitrary orientation, all of which are useful for blast-resistant design. 展开更多
关键词 Cylindrical charge blast loads Aspect ratio Azimuth angle Bridge wave
下载PDF
Numerical Analysis of Dynamic Behavior of RC Slabs Under Blast Loading 被引量:5
18
作者 都浩 李忠献 《Transactions of Tianjin University》 EI CAS 2009年第1期61-64,共4页
In order to reduce economic and life losses due to terrorism or accidental explosion threats, reinforced concrete (RC) slabs of buildings need to he designed or retrofitted to resist blast loading. In this paper the... In order to reduce economic and life losses due to terrorism or accidental explosion threats, reinforced concrete (RC) slabs of buildings need to he designed or retrofitted to resist blast loading. In this paper the dynamic behavior of RC slabs under blast loading and its influencing factors are studied. The numerical model of an RC slab subjected to blast loading is established using the explicit dynamic analysis software. Both the strain rate effect and the damage accumulation are taken into account in the material model. The dynamic responses of the RC slab subjected to blast loading are analyzed, and the influence of concrete strength, thickness and reinforcement ratio on the behavior of the RC slab under blast loading is numerically investigated. Based on the numerical results, some principles for blast-resistant design and retrofitting are proposed to improve the behavior of the RC slab subjected to blast loading. 展开更多
关键词 blast loading reinforced concrete slab dynamic behavior numerical analysis
下载PDF
Numerical Simulation of Dynamic Response and Collapse for Steel Frame Structures Subjected to Blast Load 被引量:4
19
作者 张秀华 段忠东 张春巍 《Transactions of Tianjin University》 EI CAS 2008年第B10期523-529,共7页
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite ele... The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground, multiple ALE element for simulating air and TNT explosive material. Numerical simulations of the blast pressure wave propagation, struc-tural dynamic responses and deformation, and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed. The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure. The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation. The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic defor-mation subjected to intensive blast waves, and columns lost carrying capacity, subsequently lead-ing to the collapse of the whole structure. The approach coupling influence between struc-tural deformation and fluid load well simulated the progressive collapse process of structures, and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load. 展开更多
关键词 blast load progressive collapse steel frame structures numerical simulation finite element
下载PDF
Modeling the blast load induced by a close-in explosion considering cylindrical charge parameters 被引量:3
20
作者 Yi Fan Li Chen +2 位作者 Zhan Li Heng-bo Xiang Qin Fang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期83-108,共26页
Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field exper... Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field experiments and a systematic numerical analysis were conducted.A high-fidelity finite element model developed using AUTODYN was first validated using blast data collected from field tests conducted in this and previous studies.A quantitative analysis was then performed to determine the influence of the charge shape,aspect ratio(length to diameter),orientation,and detonation configuration on the characteristics and distributions of the blast loading(incident peak overpressure and impulse)according to scaled distance.The results revealed that the secondary peak overpressure generated by a cylindrical charge was mainly distributed along the axial direction and was smaller than the overpressure generated by an equivalent spherical charge.The effects of charge shape on the blast loading at 45°and 67.5°in the axial plane could be neglected at scaled distances greater than 2 m/kg^(1/3);the effect of aspect ratios greater than 2 on the peak overpressure in the 90°(radial)direction could be neglected at all scaled distances;and double-end detonation increased the radial blast loading by up to 60%compared to singleend detonation.Finally,an empirical cylindrical charge blast loading model was developed considering the influences of charge aspect ratio,orientation,and detonation configuration.The results obtained in this study can serve as a reference for the design of blast tests using cylindrical charges and aid engineers in the design of blast-resistant structures. 展开更多
关键词 Cylindrical charge Secondary peak overpressure Aspect ratio ORIENTATION Detonation initiation point blast loading model
下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部