期刊文献+
共找到9,111篇文章
< 1 2 250 >
每页显示 20 50 100
A frequency servo SoC with output power stabilization loop technology for miniaturized atomic clocks 被引量:1
1
作者 Hongyang Zhang Xinlin Geng +3 位作者 Zonglin Ye Kailei Wang Qian Xie Zheng Wang 《Journal of Semiconductors》 EI CAS CSCD 2024年第6期13-22,共10页
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL... A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time. 展开更多
关键词 CMOS technology atomic clock phase-locked loop output power stabilization 1PPS
下载PDF
Enhancing the crystallinity and stability of perovskite solar cells with 4-tert-butylpyridine induction for efficiency exceeding 24%
2
作者 You Liu Lishuang Zheng +15 位作者 Kuanxiang Zhang Kun Xu Weicheng Xie Jue Zhang Yulu Tian Tianyuan Liu Hanzhong Xu Ruoming Ma Wei Huang Jiahui Chen Jusheng Bao Chen Chen Yongsheng Zhou Xuchun Wang Junming Chen Jungan Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期1-7,I0001,共8页
Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such ... Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such as hysteresis effects and stability issues.In this study,we introduced a novel approach to improve film crystallization by leveraging 4-tert-butylpyridine(TBP)molecules,thereby enhancing the performance and stability of PSCs.Our findings demonstrate the effective removal of PbI_(2)from the perovskite surface through strong coordination with TBP molecules.Additionally,by carefully adjusting the concentration of the TBP solution,we achieved enhanced film crystallinity without disrupting the perovskite structure.The TBP-treated perovskite films exhibit a low defect density,improved crystallinity,and improved carrier lifetime.As a result,the PSCs manufactured with TBP treatment achieve power conversion efficiency(PCE)exceeding 24%.Moreover,we obtained the PCE of 21.39%for the 12.25 cm^(2)module. 展开更多
关键词 4-tert-butylpyridine Film crystallization Perovskite solar cells power conversion efficiency stability improvement
下载PDF
Modeling and small-signal stability analysis of doubly-fed induction generator integrated system 被引量:1
3
作者 Tianming Gu Puyu Wang +3 位作者 Dingyuan Liu Ao Sun Dejian Yang Gangui Yan 《Global Energy Interconnection》 EI CSCD 2023年第4期438-449,共12页
Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the w... Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the wind generation penetration rate in power systems.In this study,we investigate a DFIG integrated system comprising four modules:(1)a wind turbine that considers the maximum power point tracking and pitch-angle control,(2)induction generator,(3)rotor/grid-side converter with the corresponding control strategy,and(4)AC power grid.The detailed small-signal modeling of the entire system is performed by linearizing the dynamic characteristic equation at the steady-state value.Furthermore,a dichotomy method is proposed based on the maximum eigenvalue real part function to obtain the critical value of the parameters.Root-locus analysis is employed to analyze the impact of changes in the phase-locked loop,short-circuit ratio,and blade inertia on the system stability.Lastly,the accuracy of the small-signal model and the real and imaginary parts of the calculated dominant poles in the theoretical analysis are verified using PSCAD/EMTDC. 展开更多
关键词 Doubly-fed induction generator(DFIG) Maximum power point tracking DICHOTOMY Small-signal stability
下载PDF
Controlling chaos in power system based on finite-time stability theory 被引量:5
4
作者 赵辉 马亚军 +2 位作者 刘思佳 高士根 钟丹 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期101-108,共8页
Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system... Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system. Based on the finite-time stability theory, two control strategies are presented to achieve finite-time chaos control. In addition, the problem of how to stabilize an unstable nonzero equilibrium point in a finite time is solved by coordinate transformation for the first time. Numerical simulations are presented to demonstrate the effectiveness and the robustness of the proposed scheme. The research in this paper may help to maintain the secure operation of power systems. 展开更多
关键词 power system chaos control finite-time stability stabilize unstable nonzero equilibrium point robust controller
下载PDF
Probabilistic small signal stability analysis of power system with wind power and photovoltaic power based on probability collocation method 被引量:9
5
作者 Cai Yan Linli Zhou +2 位作者 Wei Yao Jinyu Wen Shijie Cheng 《Global Energy Interconnection》 2019年第1期19-28,共10页
Recently, with increasing improvements in the penetration of wind power and photovoltaic power in the world, probabilistic small signal stability analysis(PSSSA) of a power system consisting of multiple types of renew... Recently, with increasing improvements in the penetration of wind power and photovoltaic power in the world, probabilistic small signal stability analysis(PSSSA) of a power system consisting of multiple types of renewable energy has become a key problem. To address this problem, this study proposes a probabilistic collocation method(PCM)-based PSSSA for a power system consisting of wind farms and photovoltaic farms. Compared with the conventional Monte Carlo method, the proposed method meets the accuracy and precision requirements and greatly reduces the computation; therefore, it is suitable for the PSSSA of this power system. Case studies are conducted based on a 4-machine 2-area and New England systems, respectively. The simulation results show that, by reducing synchronous generator output to improve the penetration of renewable energy, the probabilistic small signal stability(PSSS) of the system is enhanced. Conversely, by removing part of the synchronous generators to improve the penetration of renewable energy, the PSSS of the system may be either enhanced or deteriorated. 展开更多
关键词 RENEWABLE energy PROBABILISTIC small signal stability PROBABILISTIC COLLOCATION method Wind power Photovoltaic power
下载PDF
A multi-objective gravitational search algorithm based approach of power system stability enhancement with UPFC 被引量:6
6
作者 Ajami Ali Armaghan Mehdi 《Journal of Central South University》 SCIE EI CAS 2013年第6期1536-1544,共9页
On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UP... On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UPFC supplementary controller to enhance the dynamic stability of a power system is evaluated by measuring the electromechanical controllability through singular value decomposition (SVD) analysis. This controller is tuned to simultaneously shift the undamped electromeehanical modes to a prescribed zone in the s-plane. The problem of robust UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multi-objective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using gravitational search algorithm (GSA) that has a strong ability to find the most optimistic results. The different loading conditions are simulated on a SMIB system and the rotor speed deviation, internal voltage deviation, DC voltage deviation and electrical power deviation responses are studied with the effect of this flexible AC transmission systems (FACTS) controller. The results reveal that the tuned GSA based UPFC controller using the proposed multi-objective function has an excellent capability in damping power system with low frequency oscillations and greatly enhances the dynamic stability of the power systems. 展开更多
关键词 unified power flow controller gravitational search algorithm power system stability
下载PDF
Lyapunov-Krasovskii functional based power system stability analysis in environment of WAMS 被引量:3
7
作者 李婷 吴敏 何勇 《Journal of Central South University》 SCIE EI CAS 2010年第4期801-806,共6页
In order to analyze power system stability in environment of WAMS(wide area measurement system),a new steady state stability model with time-varying delay was proposed for power system.The factors of exciter and power... In order to analyze power system stability in environment of WAMS(wide area measurement system),a new steady state stability model with time-varying delay was proposed for power system.The factors of exciter and power system stabilizer with delay were introduced into analytical model.To decrease conservativeness of stability analysis,an improved Lyapunov-Krasovskii functional was constructed,and then a new delay-dependent steady state stability criterion for power system,which overcomes the disadvantages of eigenvalue computation method,was derived.The proposed model and criterion were tested on synchronous-machine infinite-bus power system.The test results demonstrate that Lyapunov-Krasovskii functional based power system stability analysis method is applicable and effective in the analysis of time delay power system stability. 展开更多
关键词 power system steady state stability time-varying delay power system stabilizer
下载PDF
Stability Study on the Bucket Foundation with Multi-Compartment During the Floating-up Process Considering Air Compressibility
8
作者 YE Fang-di LIAN Ji-jian +4 位作者 GUO Yao-hua WANG Hai-jun XIAO Tian-run XIONG Dong-zhi YU Tong-shun 《China Ocean Engineering》 SCIE EI CSCD 2023年第6期975-988,共14页
In the process of developing offshore wind power towards deeper waters,the advantages of the bucket foundation in terms of integrated construction and economy are becoming increasingly evident.In contrast to conventio... In the process of developing offshore wind power towards deeper waters,the advantages of the bucket foundation in terms of integrated construction and economy are becoming increasingly evident.In contrast to conventional floating bodies,the air-floating bucket foundations can achieve self-floating with the help of the air in the compartment and adjust its buoyancy and stability by controlling the air volume in the compartment.The construction process of the bucket foundation involves the control of air in the compartment,thus making it more difficult to construct.Especially after the prefabrication of the bucket foundation,the stability of the bucket foundation at the floating-up stage is particularly critical.The stability of a multi-compartment bucket foundation during the floating-up process cannot be accurately evaluated as the existing theoretical method of air-floating structures does not adequately consider air compressibility.To ensure the safety of the floating-up process,a theoretical method based on the idea of intact stability has been developed to analyze the stability of the air-floating bucket foundations,which will allow accurate calculation of the righting arm for different tilt states and critical air leakage angle.At the same time,accuracy and feasibility of the proposed theoretical method are verified through indoor model tests and practical operation of the prototype structure during the floating-up process.In addition,measures to enhance the stability of the bucket foundation are proposed through sensitivity analysis of influencing factors. 展开更多
关键词 offshore wind power bucket foundation air-floating structure stability
下载PDF
Influence of canopy ratio of powered roof support on longwall working stability——A case study 被引量:1
9
作者 Sylwester Rajwa Tomasz Janoszek Stanis?aw Prusek 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第4期591-598,共8页
The case study describes longwall coal seam A in a hard coal mine,where longwall coal face stability loss and periodic roof fall occurrences had been registered.The authors have attempted to explain the situation base... The case study describes longwall coal seam A in a hard coal mine,where longwall coal face stability loss and periodic roof fall occurrences had been registered.The authors have attempted to explain the situation based on in-situ measurements and observations of the longwall working as well as numerical simulation.The calculations included several parameters,such as powered roof support geometry in the form of the canopy ratio,which is a factor that influences load distribution along the canopy.Numerical simulations were realized based on a rock mass model representing realistic mining and geological conditions at a depth of 600 m below surface for coal seam A.Numerical model assumptions are described,while the obtained results were compared with the in-situ measurements.The conclusions drawn from this work can complement engineering knowledge utilized at the stage of powered roof support construction and selection in order to improve both personnel safety and longwall working stability,and to achieve better extraction. 展开更多
关键词 COAL MINING Modelling powered ROOF supports LONGWALL workings Safety stability
下载PDF
Chaos quantum particle swarm optimization for reactive power optimization considering voltage stability 被引量:2
10
作者 瞿苏寒 马平 蔡兴国 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第3期351-356,共6页
The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonl... The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonlinear functions having multiple local minima and nonlinear and discontinuous constraints. To deal with the problem,quantum particle swarm optimization (QPSO) is firstly introduced in this paper,and according to QPSO,chaotic quantum particle swarm optimization (CQPSO) is presented,which makes use of the randomness,regularity and ergodicity of chaotic variables to improve the quantum particle swarm optimization algorithm. When the swarm is trapped in local minima,a smaller searching space chaos optimization is used to guide the swarm jumping out the local minima. So it can avoid the premature phenomenon and to trap in a local minima of QPSO. The feasibility and efficiency of the proposed algorithm are verified by the results of calculation and simulation for IEEE 14-buses and IEEE 30-buses systems. 展开更多
关键词 reactive power optimization voltage stability margin quantum particle swarm optimization chaos optimization
下载PDF
Non-Fullerene-Based Inverted Organic Photovoltaic Device with Long-Term Stability
11
作者 Do Hui Kim Febrian T.A.Wibowo +4 位作者 Dongchan Lee Narra V.Krishna Sujung Park Shinuk Cho Sung-Yeon Jang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期214-221,共8页
In this work,we developed the PM6:Y6-based inverted structure organic photovoltaic(i-OPV)with improved power conversion efficiency(PCE)and long-term stability by resolving the origins of the performance deterioration.... In this work,we developed the PM6:Y6-based inverted structure organic photovoltaic(i-OPV)with improved power conversion efficiency(PCE)and long-term stability by resolving the origins of the performance deterioration.The deep defects between the metal oxide-based electron transport layer and bulk-heterojunction photoactive layer interface were responsible for suboptimal PCE and facilitated degradation of devices.While the density of deep traps is increased during the storage of i-OPV,the penetrative oxygen-containing defects additionally generated shallow traps below the band-edge of Y6,causing an additional loss in the open-circuit voltage.The suppression of interfacial defects by chemical modification effectively improved the PCE and long-term stability of i-OPV.The modified i-OPV(mi-OPV)achieved a PCE of 17.42%,which is the highest value among the reported PM6:Y6-based i-OPV devices.Moreover,long-term stability was significantly improved:~90%and~80%retention of its initial PCE after 1200 h of air storage and illumination,respectively. 展开更多
关键词 deep trap inverted structure long-term stability organic photovoltaic power conversion efficiency
下载PDF
C-Vine Pair Copula Based Wind Power Correlation Modelling in Probabilistic Small Signal Stability Analysis 被引量:3
12
作者 Jin Xu Wei Wu +1 位作者 Keyou Wang Guojie Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期1154-1160,共7页
The increasing integration of wind power generation brings more uncertainty into the power system. Since the correlation may have a notable influence on the power system,the output powers of wind farms are generally c... The increasing integration of wind power generation brings more uncertainty into the power system. Since the correlation may have a notable influence on the power system,the output powers of wind farms are generally considered as correlated random variables in uncertainty analysis. In this paper, the C-vine pair copula theory is introduced to describe the complicated dependence of multidimensional wind power injection, and samples obeying this dependence structure are generated. Monte Carlo simulation is performed to analyze the small signal stability of a test system. The probabilistic stability under different correlation models and different operating conditions scenarios is investigated. The results indicate that the probabilistic small signal stability analysis adopting pair copula model is more accurate and stable than other dependence models under different conditions. 展开更多
关键词 Monte Carlo simulation pair copula small signal stability wind power correlation
下载PDF
Stability of GM(1,1) power model on vector transformation 被引量:1
13
作者 Jinhai Guo Xinping Xiao +1 位作者 Jun Liu Shuhua Mao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期103-109,共7页
The morbidity problem of the GM(1,1) power model in parameter identification is discussed by using multiple and rotation transformation of vectors. Firstly we consider the morbidity problem of the special matrix and... The morbidity problem of the GM(1,1) power model in parameter identification is discussed by using multiple and rotation transformation of vectors. Firstly we consider the morbidity problem of the special matrix and prove that the condition number of the coefficient matrix is determined by the ratio of lengths and the included angle of the column vector, which could be adjusted by multiple and rotation transformation to turn the matrix to a well-conditioned one. Then partition the corresponding matrix of the GM(1,1) power model in accordance with the column vector and regulate the matrix to a well-conditioned one by multiple and rotation transformation of vectors, which completely solve the instability problem of the GM(1,1) power model. Numerical results show that vector transformation is a new method in studying the stability problem of the GM(1,1) power model. 展开更多
关键词 grey power model stability MORBIDITY vector transformation condition number of matrix
下载PDF
Enhanced Electric Power Adaptability Using Hybrid Pumped-Hydro Technology with Wind and Photovoltaic Integration
14
作者 Uwem O.Ikitde Abayomi A.Adebiyi +1 位作者 Innocent E.Davidson Ayodeji S.Akinyemi 《Energy Engineering》 EI 2023年第9期1939-1961,共23页
The integration of solar and wind energy into the electrical grid has received global research attention due to their unpredictable characteristics.Because wind energy varies across all timescales of utility activity,... The integration of solar and wind energy into the electrical grid has received global research attention due to their unpredictable characteristics.Because wind energy varies across all timescales of utility activity,renewable energy generation should be supplemented and enhanced,from real-time,minute-to-minute variations to annual alterations influencing long-termstrategy.Wind energy generation does not only fluctuate but is also challenging to accurately forecast the timeframes of significance to electricity decision makers;day-ahead and long-term making plans of framework sufficiency such as meeting the network peak load annually.A utility that integrates wind and solar energy into its electricity mix would understand how to adapt to uncertainty and variability in operations while sustaining grid stability.Due to hydropower’s adaptability,a system using hydropower as one of its generating resources could be precisely adapted to absorb the variability of wind and solar energy.The objective of this research study is to create a hybrid system comprising hydro-wind and solar(Hybrid-HWS)integration for power balancing in an isolated electrical network in Klipkop village,Pretoria region,South Africa.The desirability of designing and building goaf storage tank in regard to capability,the fullness of line throughoutwater pumping,dispensing,storage tank spillage,and pressure difference throughout liquid flow within the storage tanks were preliminary assessed using geotechnical and weather forecasting data from a distinctive area of Klipkop town in Pretoria,South Africa.Different facility hours premised on daylight accessibility are scheduled to balance maximum load at early and late hours.However,in the scenario of electrical power,time shift requiring storage for extended periods of time,such as in terms of hours,Hybrid-HWS has been found to have a crucial role.The results of simulations showed a coordinated process design for Hybrid-HWS Energy Storage(ES)to determine everyday strategic planning in reducing the variability of the system resulting from wind-solar-pumped hydro ES output inadequacies and satisfy daily load demands.It could be recommended that by considering the adaptability characteristics,extremely rapidly,ramping,peaking support and maximum stabilizing aid of the system could be archived with pump-hydro into the energy mix which can provide specific guidelines for energy policymakers. 展开更多
关键词 Pumped hydro storage(PHS) hybrid hydro-wind-solar technique abandoned coal mine power balancing
下载PDF
A Nonlinear Coordinated Approach to Enhance the Transient Stability of Wind Energy-Based Power Systems 被引量:4
15
作者 Mohammad Javad Morshed 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期1087-1097,共11页
This paper proposes a novel framework that enables the simultaneous coordination of the controllers of doubly fed induction generators(DFIGs) and synchronous generators(SGs).The proposed coordination approach is based... This paper proposes a novel framework that enables the simultaneous coordination of the controllers of doubly fed induction generators(DFIGs) and synchronous generators(SGs).The proposed coordination approach is based on the zero dynamics method aims at enhancing the transient stability of multi-machine power systems under a wide range of operating conditions. The proposed approach was implemented to the IEEE39-bus power systems. Transient stability margin measured in terms of critical clearing time along with eigenvalue analysis and time domain simulations were considered in the performance assessment. The obtained results were also compared to those achieved using a conventional power system stabilizer/power oscillation(PSS/POD) technique and the interconnection and damping assignment passivity-based controller(IDA-PBC). The performance analysis confirmed the ability of the proposed approach to enhance damping and improve system’s transient stability margin under a wide range of operating conditions. 展开更多
关键词 Doubly fed induction generator(DFIG) excitation controller multi-machine power system synchronous generator(SG) transient stability zero dynamics
下载PDF
Transient Stability Analysis of Power System Based on an Improved Neural Network 被引量:1
16
作者 唐巍 陈学允 刘晓明 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1996年第3期47-52,共6页
A new type of ANN (Artificial Neural Network) structure is introduced, and a nonlinear transformation of the original features is proposed so as to improve the learning covergence of the neural network. This kind of i... A new type of ANN (Artificial Neural Network) structure is introduced, and a nonlinear transformation of the original features is proposed so as to improve the learning covergence of the neural network. This kind of improved ANN is then used to analyse the transient stability of two real power systems. The results show that this method possesses better effectiveness and high convergence speed. 展开更多
关键词 ss: Artificial NEURAL NETWORK nonlinear transformation power SYSTEM TRANSIENT stability analysis learning convergence
下载PDF
Contribution to the Optimization of the Transient Stability of an Electric Power Transmission Network Using a Universal Power Flow Compensator Controlled by a Three-Stage Inverter 被引量:2
17
作者 Koko Koko Joseph Nneme Nneme Léandre Ndjakomo Essiane Salomé 《World Journal of Engineering and Technology》 2020年第4期675-688,共14页
The use of an electrical network as close as possible to its limits can lead to its instability in the event of a high amplitude disturbance. The damping of system oscillations can be achieved by conventional means of... The use of an electrical network as close as possible to its limits can lead to its instability in the event of a high amplitude disturbance. The damping of system oscillations can be achieved by conventional means of voltage and speed regulation but also by FACTS (Flexible AC Transmission Systems) devices, which are increasingly used in power networks. In this work, optimal control coordination between a hybrid power flow controller and a three-level inverter was used to improve the transient stability of a transmission line. The UPFC is a combination of a serial compensator (SSSC) and a parallel compensator (STATCOM) both connected to a DC-LINK DC bus. The SSSC acts as a voltage source for the network and injects a voltage that can be adjusted in phase and amplitude in addition to the network voltage;the STATCOM acts as a current source. The approach used is tested in the Matlab Simulink environment on a single machine network. Optimal controller tuning gives a better transient stability improvement by reducing the transport angle oscillations from 248.17% to 9.85%. 展开更多
关键词 FACTS UPFC Three-Stage Inverter PI power Transit Transient stability
下载PDF
Reliability and sensitivity analysis of loop-designed security and stability control system in interconnected power systems 被引量:4
18
作者 Shenghu Li Huimin Zhou +2 位作者 Yunsong Yan Wei Han Jianfeng Ren 《Global Energy Interconnection》 EI CAS CSCD 2022年第5期501-511,共11页
Security and stability control system(SSCS)in power systems involves collecting information and sending the decision from/to control stations at different layers;the tree structure of the SSCS requires more levels.Fai... Security and stability control system(SSCS)in power systems involves collecting information and sending the decision from/to control stations at different layers;the tree structure of the SSCS requires more levels.Failure of a station or channel can cause all the execution stations(EXs)to be out of control.The randomness of the controllable capacity of the EXs increases the difficulty of the reliability evaluation of the SSCS.In this study,the loop designed SSCS and reliability analysis are examined for the interconnected systems.The uncertainty analysis of the controllable capacity based on the evidence theory for the SSCS is proposed.The bidirectional and loop channels are introduced to reduce the layers and stations of the existing SSCS with tree configuration.The reliability evaluation and sensitivity analysis are proposed to quantify the controllability and vulnerable components for the SSCS in different configurations.By aiming at the randomness of the controllable capacity of the EXs,the uncertainty analysis of the controllable capacity of the SSCS based on the evidence theory is proposed to quantify the probability of the SSCS for balancing the active power deficiency of the grid. 展开更多
关键词 Security and stability control system(SSCS) Loop design CONTROLLABILITY VULNERABILITY Interconnected power systems Evidence theory Uncertainty controllable capacity.
下载PDF
Micro Hydro Power Plant for Sustainable Energy in Rural Electrification: A Case Study in Cameroon
19
作者 Elie Bertrand Kengne Signe Lyse Vanessa Ngansop Tchatchouang +3 位作者 Pierre Pokem Paule Alexandrine Ekoube Lucien Meva’a Jean Nganhou 《Journal of Power and Energy Engineering》 2023年第6期34-43,共10页
The state of Cameroon, faced with the situation the electricity deficits, is promoting the development of renewable energies in general and to meet rural electrification needs in particular. The purpose of this work i... The state of Cameroon, faced with the situation the electricity deficits, is promoting the development of renewable energies in general and to meet rural electrification needs in particular. The purpose of this work is to study the feasibility of the MHP of Batcheu, to show its contribution to sustainable development in this locality and to prove that it is a profitable project. After study, it appears that the waterfall of Batcheu is favourable to the establishment of a MHP with an installed power of 260 kW with an operating diagram corresponding to a Francis turbine. Given that it is a renewable energy that can supply more than 800 households in rural areas, its contribution to sustainable development is obvious. Its investment cost is estimated at 171,465,396 FCFA. It is a profitable project with a payback time of 7 years and 2 months. 展开更多
关键词 Micro hydro power Sustainable Development Rural Electrification
下载PDF
IC Pattern Based Power Factor Maximization Model for Improved Power Stabilization
20
作者 N.Hariharan Y.Sukhi N.Kalaiarasi 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期401-414,共14页
The voltagefluctuation in electric circuits has been identified as key issue in different electric systems.As the usage of electricity growing in rapid way,there exist higherfluctuations in powerflow.To maintain theflow or... The voltagefluctuation in electric circuits has been identified as key issue in different electric systems.As the usage of electricity growing in rapid way,there exist higherfluctuations in powerflow.To maintain theflow or stabi-lity of power in any electric circuit,there are many circuit models are discussed in literature.However,they suffer to maintain the output voltage and not capable of maintaining power stability.To improve the performance in power stabilization,an efficient IC pattern based power factor maximization model(ICPFMM)in this article.The model is focused on improving the power stability with the use of IC(Inductor and Conductor)towards identifying most efficient circuit for the current duty cycle according to the input voltage,voltage in capacitor and output voltage required.The model with boost converter diverts the incoming voltage through number of conductors and inductors.By triggering specific inductor,a specific capacitor gets charged and a particular circuit gets on.The model maintains num-ber of IC(Inductor and Conductor)patterns through which the powerflow occurs.According to that,the pattern available,the mofset controls the level of power to be regulated through any circuit.From the pattern,the model computes the Cir-cuits Switching Loss and Circuits Conduction Loss for various circuits.Accord-ing to the input voltage,the model estimates Circuit Power Stabilization Support(CPSS)according to the voltage available in any capacitor and input voltage.Using the value of CPSS,the model trigger optimal number of circuits to maintain voltage stability.In this approach,more than one circuit has been triggered to maintain output voltage and to get charged.The proposed model not only main-tains power stability but also reduces the wastage in voltage which is not utilized.The proposed model improves the performance in voltage stability with less switching loss. 展开更多
关键词 Soft computing DC-DC converters boost rectifiers power stabilization conduction loss switching loss intelligent automation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部