In this paper, a set of variational formulas of solving nonlinear instability critical loads are established from the viewpoint of variational principle. The paper shows that it is very convenient to solve nonlinear i...In this paper, a set of variational formulas of solving nonlinear instability critical loads are established from the viewpoint of variational principle. The paper shows that it is very convenient to solve nonlinear instability critical load by using the variational formulas suggested in this paper.展开更多
The long-term stability of backfill material is the key to retaining roadways successfully. In order to study the rheological deformation of backfill material and its long-term stability, given the visco-elastoplastic...The long-term stability of backfill material is the key to retaining roadways successfully. In order to study the rheological deformation of backfill material and its long-term stability, given the visco-elastoplastic properties of this material, we introduced a softening and a hardening function for a new nonlinear the- ological model with time-varying parameters. Based on this, we presented the instability condition of this model by using the principle of minimum potential energy. Combined with engineering practice, we cal- culated the urlstable time period of backfill material. The results show that the time of instability of the backfill material relate to the initial parameters of the material, "the coefficients decided by temperature and the ratio of the plastic zone of the backfill material. Based on the results of our analysis from the point of view of energy, we can quickly obtain the time of instability of this model from our graphical analysis. The time of instability of the backfill material obtained from our investigation coincides with an actual project.展开更多
A three-point fifth-order accurate generalized compact scheme (GC scheme) with a spectral-like resolution is constructed in a general way. The scheme satisfies the principle of stability and the principle about suppre...A three-point fifth-order accurate generalized compact scheme (GC scheme) with a spectral-like resolution is constructed in a general way. The scheme satisfies the principle of stability and the principle about suppression of the oscillations, therefore numerical errors can decay automatically and no spurious oscillations are generated around shocks. The third-order TVD type Runge-Kutta method is employed for the time integration, thus making the GC scheme best suited for unsteady problems. Numerical results show that the GC scheme is shock-capturing. The time-dependent boundary conditions proposed by Thompson are well employed when the algorithm is applied to the Euler equations of gas dynamics.展开更多
文摘In this paper, a set of variational formulas of solving nonlinear instability critical loads are established from the viewpoint of variational principle. The paper shows that it is very convenient to solve nonlinear instability critical load by using the variational formulas suggested in this paper.
基金Project (No. 50874089) is supported by the National Natural Science Foundation of ChinaProject (No. 20096121110002) by the College of Doctoral Foundation of the Ministry of Education the Scientific Research Program Funded by Shaanxi Provincial Education Commission (No. 2010JK692)
文摘The long-term stability of backfill material is the key to retaining roadways successfully. In order to study the rheological deformation of backfill material and its long-term stability, given the visco-elastoplastic properties of this material, we introduced a softening and a hardening function for a new nonlinear the- ological model with time-varying parameters. Based on this, we presented the instability condition of this model by using the principle of minimum potential energy. Combined with engineering practice, we cal- culated the urlstable time period of backfill material. The results show that the time of instability of the backfill material relate to the initial parameters of the material, "the coefficients decided by temperature and the ratio of the plastic zone of the backfill material. Based on the results of our analysis from the point of view of energy, we can quickly obtain the time of instability of this model from our graphical analysis. The time of instability of the backfill material obtained from our investigation coincides with an actual project.
基金The project supported by the National Natural Science Foundation of China (19972038)Foundation of the National CFD Laboratory of China
文摘A three-point fifth-order accurate generalized compact scheme (GC scheme) with a spectral-like resolution is constructed in a general way. The scheme satisfies the principle of stability and the principle about suppression of the oscillations, therefore numerical errors can decay automatically and no spurious oscillations are generated around shocks. The third-order TVD type Runge-Kutta method is employed for the time integration, thus making the GC scheme best suited for unsteady problems. Numerical results show that the GC scheme is shock-capturing. The time-dependent boundary conditions proposed by Thompson are well employed when the algorithm is applied to the Euler equations of gas dynamics.