期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Structural failure mechanism and strengthening method of fracture plugging zone for lost circulation control in deep naturally fractured reservoirs 被引量:3
1
作者 XU Chengyuan YAN Xiaopeng +2 位作者 KANG Yili YOU Lijun ZHANG Jingyi 《Petroleum Exploration and Development》 2020年第2期430-440,共11页
Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failu... Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failure pattern of plugging zone is developed to reveal the plugging zone failure mechanisms in deep, high temperature, high pressure, and high in-situ stress environment. Based on the fracture plugging zone strength model, key performance parameters are determined for the optimal selection of loss control material(LCM). Laboratory fracture plugging experiments with new LCM are carried out to evaluate the effect of the key performance parameters of LCM on fracture plugging quality. LCM selection strategy for fractured reservoirs is developed. The results show that the force chain formed by LCMs determines the pressure stabilization of macro-scale fracture plugging zone. Friction failure and shear failure are the two major failure patterns of fracture plugging zone. The strength of force chain depends on the performance of micro-scale LCM, and the LCM key performance parameters include particle size distribution, fiber aspect ratio, friction coefficient, compressive strength, soluble ability and high temperature resistance. Results of lab experiments and field test show that lost circulation control quality can be effectively improved with the optimal material selection based on the extracted key performance parameters of LCMs. 展开更多
关键词 deep layer fractured reservoir lost circulation fracture plugging zone multi-scale structure strength and stability loss control material
下载PDF
Effect of mineralogy on friction-dilation relationships for simulated faults:Implications for permeability evolution in caprock faults 被引量:1
2
作者 Fengshou Zhang Mengke An +2 位作者 Lianyang Zhang Yi Fang Derek Elsworth 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第2期439-450,共12页
This paper experimentally explores the frictional sliding behavior of two simulated gouges:one,a series of quartz–smectite mixtures,and the other,powdered natural rocks,aiming to evaluate and codify the effect of min... This paper experimentally explores the frictional sliding behavior of two simulated gouges:one,a series of quartz–smectite mixtures,and the other,powdered natural rocks,aiming to evaluate and codify the effect of mineralogy on gouge dilation and frictional strength,stability,and healing.Specifically,velocity-stepping and slide-hold-slide experiments were performed in a double direct shear configuration to analyze frictional constitutive parameters at room temperature,under normal stresses of 10,20,and 40 MPa.Gouge dilation was measured based on the applied step-wise changes in shear velocity.The frictional response of the quartz–smectite mixtures and powdered natural rocks are affected by their phyllosilicate content.Frictional strength and healing rates decrease with increasing phyllosilicate content,and at 20 wt.%a transition from velocity-weakening to velocity-strengthening behavior was noted.For both suites of gouges,dilation is positively correlated with frictional strength and healing rates,and negatively correlated with frictional stability.Changes in the permeability of gouge-filled faults were estimated from changes in mean porosity,indexed through measured magnitudes of gouge dilation.This combined analysis implies that the reactivation of caprock faults filled with phyllosilicaterich gouges may have a strong influence on permeability evolution in caprock faults. 展开更多
关键词 Fault gouge MINERALOGY strength and stability Frictional healing Gouge dilation Permeability
下载PDF
Comparison of short-term and long-term performances for polymer-stabilized sand and clay 被引量:2
3
作者 Sepehr Rezaeimalek Abdolreza Nasouri +2 位作者 Jie Huang Sazzad Bin-Shafique Simon T.Gilazghi 《Journal of Traffic and Transportation Engineering(English Edition)》 2017年第2期145-155,共11页
A series of tests were carried out on sulfate rich, high-plasticity clay and poorly-graded natural sand to study the effectiveness of a methylene diphenyl diisocyanate based liquid polymer soil stabilizer in improving... A series of tests were carried out on sulfate rich, high-plasticity clay and poorly-graded natural sand to study the effectiveness of a methylene diphenyl diisocyanate based liquid polymer soil stabilizer in improving the unconfined compressive strength (UCS) of freshly stabilized soils and aged sand specimens. The aged specimens were prepared by exposing the specimens to ultraviolet radiation, freeze-thaw, and wet-dry weathering. The polymer soil stabilizer also mitigated the swelling of the expansive clay. For clay, the observations indicated that the sequence of adding water and liquid polymer had great influence on the gained UGS of stabilized specimens. However, this was shown to be of little importance for sand. Furthermore, sand samples showed incremental gains in UCS when they were submerged in water. This increase was significant for up to 4 days of soaking in water after 4 days of ambient air curing. Conversely, the clay samples lost a large fraction of their UCS when soaked in water; however, their remaining strength was still considerable. The stabilized specimens showed acceptable endurance under weathering action, although sample yellowing due to ultraviolet radiation was evident on the surface of the specimens. Except for moisture susceptibility of the clay specimens, the results of this study suggested the liquid stabilizer could be successfully utilized to provide acceptable strength, durability and mitigated swelling. 展开更多
关键词 Soil stabilization Liquid polymer Sand Expansive clay Unconhned compressive strength
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部