期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Characteristics of Gas Hydrate Stability Zone and Resource Evaluation in Okinawa Trough 被引量:1
1
作者 唐勇 金翔龙 方银霞 《Marine Science Bulletin》 CAS 2006年第2期40-48,共9页
According to the processing and interpretation of multichannel seismic reflection data in the area of Okinawa Trough, the BSR (bottom simulating reflector) was identified in 16 seismic profiles. By means of special ... According to the processing and interpretation of multichannel seismic reflection data in the area of Okinawa Trough, the BSR (bottom simulating reflector) was identified in 16 seismic profiles. By means of special processing technologies such as AVO and waveform inversion, the authors, for the first time, directly used the BSR to outline the distribution tendency of thickness of gas hydrate stability zone in the Trough and thought that the largest stability zone thickness was in the south and the smallest in the north. Then through calculation the authors got the thickness of hydrate stability zone and resource of the hydrate. This would be useful to the future hydrate exploration and resource evaluation in the Okinawa Trough. 展开更多
关键词 BSR gas hydrate hydrate stability zone
下载PDF
A Preliminary Study of the Gas Hydrate Stability Zone in the South China Sea 被引量:22
2
作者 JIN Chunshuang WANG Jiyang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2002年第4期423-428,共6页
Based on the analysis of sea-bottom temperature and geothermal gradient, andby means of the phase boundary curve of gas hydrate and the sea-bottom temperature versus waterdepth curve in the South China Sea, this paper... Based on the analysis of sea-bottom temperature and geothermal gradient, andby means of the phase boundary curve of gas hydrate and the sea-bottom temperature versus waterdepth curve in the South China Sea, this paper studies the temperature and pressure conditions forgas hydrate to keep stable. In a marine environment, methane hydrate keeps stable at water depthsgreater than 550 min the South China Sea. Further, the thickness of the gas hydrate stability zonein the South China Sea was calculated by using the phase boundary curve and temperature-depthequations. The result shows that gas hydrate have a better perspective in the southeast of theDongsha Islands. the northeast of the Xisha Islands and the north of the Nansha Islands for thickerstability zones. 展开更多
关键词 South China Sea gas hydrate stability zone geothermal gradient sea-bottomtemperature
下载PDF
Heat flow pattern,base of methane hydrates stability zones and BSRs in Shenhu Area,northern South China Sea 被引量:2
3
作者 ZHANG Yi HE Lijuan +5 位作者 WANG Jiyang XU Xing SHA Zhibing GONG Yuehua WANG Hongbing LIANG Jinqiang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2011年第1期59-67,共9页
Using the collected 433 heat flow values, we estimated the bases of methane hydrate stability zone (BHSZ), in northern South China Sea (NSCS). Through comparing BHSZs with the depths of bottom simulating reflecto... Using the collected 433 heat flow values, we estimated the bases of methane hydrate stability zone (BHSZ), in northern South China Sea (NSCS). Through comparing BHSZs with the depths of bottom simulating reflectors (BSRs), in Shenhu Area (SA), we found that there are big differences between them. In the north of SA, where the water depth is shallow, many slumps developed and the sedimentation rate is high, it appears great negative difference (as large as -192%). However, to the southeast of SA, where the water depth is deeper, sedimentation rate is relatively low and uplift basement topography exists, it changes to positive difference (as large as +45%). The differences change so great, which haven't been observed in other places of the world. After considering the errors from the process of heat flow measurement, the BSR depth, the relationship of thermal conductivity with the sediments depth, and the fluid flow activities, we conclude that the difference should be not caused by these errors. Such big disagreement may be due to the misunderstanding of BSR. The deviant "BSRs" could represent the paleo-BSRs or just gas-bearing sediment layers, such as unconformities or the specific strata where have different permeability, which are not hydraterelated BSRs. 展开更多
关键词 methane hydrate BSR base of methane hydrate stability zone SLUMP heat flow
下载PDF
Geothermal investigation of the thickness of gas hydrate stability zone in the north continental margin of the South China Sea 被引量:3
4
作者 WANG Yanmin LIU Shaowen +2 位作者 HAO Feifei ZHAO Yunlong HAO Chunyan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第4期72-79,共8页
The exploration of unconventional and/or new energy resources has become the focus of energy research worldwide,given the shortage of fossil fuels.As a potential energy resource,gas hydrate exists only in the environm... The exploration of unconventional and/or new energy resources has become the focus of energy research worldwide,given the shortage of fossil fuels.As a potential energy resource,gas hydrate exists only in the environment of high pressure and low temperature,mainly distributing in the sediments of the seafloor in the continental margins and the permafrost zones in land.The accurate determination of the thickness of gas hydrate stability zone is essential yet challenging in the assessment of the exploitation potential.The majority of previous studies obtain this thickness by detecting the bottom simulating reflectors(BSRs) layer on the seismic profiles.The phase equilibrium between gas hydrate stable state with its temperature and pressure provides an opportunity to derive the thickness with the geothermal method.Based on the latest geothermal dataset,we calculated the thickness of the gas hydrate stability zone(GHSZ) in the north continental margin of the South China Sea.Our results indicate that the thicknesses of gas hydrate stability zone vary greatly in different areas of the northern margin of the South China Sea.The thickness mainly concentrates on 200–300 m and distributes in the southwestern and eastern areas with belt-like shape.We further confirmed a certain relationship between the GHSZ thickness and factors such as heat flow and water depth.The thickness of gas hydrate stability zone is found to be large where the heat flow is relatively low.The GHSZ thickness increases with the increase of the water depth,but it tends to stay steady when the water depth deeper than 3 000 m.The findings would improve the assessment of gas hydrate resource potential in the South China Sea. 展开更多
关键词 gas hydrate thickness of stability zone heat flow continental margin South China Sea
下载PDF
Active zone stability:insights from fly neuromuscular junction
5
作者 Xiaolin Tian Chunlai Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第5期677-678,共2页
The presynaptic active zone is a dynamic structure that orchestrates regulated release of neurotrans- mitters. Developmental and aging processes, and changes in neuronal network activity can all modulate the number, s... The presynaptic active zone is a dynamic structure that orchestrates regulated release of neurotrans- mitters. Developmental and aging processes, and changes in neuronal network activity can all modulate the number, size and composition of active zone and thereby synaptic efficacy. However, very little is known about the mechanism that controls the structural stability of active zone. By study- ing a model synapse, the Drosophila neuromuscular iunction, our recent work shed light on how two scaffolding proteins at the active zone regulate active zone stability by promoting a localized dephos- phorylation event at the nerve terminal. Here we discuss the major insights from our findings and their implications for future research. 展开更多
关键词 active zone stability DROSOPHILA neuromuscular junction DEPHOSPHORYLATION Liprin-α Syd-1 PP2A GSK-3β
下载PDF
Forming condition of transient saturated zone and its distribution in residual slope under rainfall conditions 被引量:16
6
作者 曾铃 卞汉兵 +1 位作者 史振宁 何忠明 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1866-1880,共15页
Rainfall, as one of the most significant factors triggering the residual soil slope failure, leads to not only the reduction of soil shear strength, but also the increase of soil weight and the decrease of matric suct... Rainfall, as one of the most significant factors triggering the residual soil slope failure, leads to not only the reduction of soil shear strength, but also the increase of soil weight and the decrease of matric suction as well. All these modifications in soil properties have important influence on the slope stability. The water infiltration and redistribution inside the slope are the preconditions of the slope stability under rainfall conditions. Based on the numerical simulation via finite element method, the water infiltration process under rainfall conditions was studied in the present work. The emphases are the formation, distribution and dissipation of transient saturated zone. As for the calculation parameters, the SWCC and the saturated permeability have been determined by pressure plate test and variable head test respectively. The entire process(formation, development, dissipation) of the transient saturated zone was studied in detail. The variations of volumetric water content, matric suction and hydraulic gradient inside the slope, and the eventually raise of groundwater table were characterized and discussed, too. The results show that the major cause of the formation of transient saturated zone is ascribed to the fact that the exudation velocity of rainwater on the wetting front is less than the infiltration velocity of rainfall; as a result, the water content of the soil increases. On the other hand, the formation and extension of transient saturated zone have a close relationship with rainfall intensity and duration. The results can help the geotechnical engineers for the deeper understanding of the failure of residual slope under rainfall condition. It is also suggested that the proper drainage system in the slope may be the cost-effective slope failure mitigation method. 展开更多
关键词 slope stability residual soil slope rainfall infiltration numerical simulation transient saturated zone
下载PDF
Estimation of soil reinforcement by the roots of four postdam prevailing grass species in the riparian zone of Three Gorges Reservoir, China 被引量:17
7
作者 ZHONG Rong-hua HE Xiu-bin +5 位作者 BAO Yu-hai TANG Qiang GAO Jin-zhang YAN Dan-dan WANG Ming-feng LI Yu 《Journal of Mountain Science》 SCIE CSCD 2016年第3期508-521,共14页
Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank... Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank stability and mitigate soil erosion by the root system. In this study, the roots of four prevailing grass species, namely, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, in the riparian zone were investigated in relation to additional soil cohesion. Roots were sampled using a single root auger. Root length density(RLD) and root area ratio(RAR) were measured by using the Win RHIZO image analysis system. Root tensile strength(TR) was performed using a manualdynamometer, and the soil reinforcement caused by the roots was estimated using the simple Wu's perpendicular model. Results showed that RLD values of the studied species ranged from 0.24 cm/cm3 to20.89 cm/cm3 at different soil layers, and RLD were significantly greater at 0–10 cm depth in comparison to the deeper soil layers(&gt;10 cm). RAR measurements revealed that on average 0.21% of the reference soil area was occupied by grass roots for all the investigated species. The measured root tensile strength was the highest for P. paspaloides(62.26MPa) followed by C. dactylon(51.49 MPa), H.compressa(50.66 MPa), and H. altissima(48.81MPa). Nevertheless, the estimated maximum root reinforcement in this investigation was 22.5 k Pa for H.altissima followed by H. compressa(21.1 k Pa), P.paspaloides(19.5 k Pa), and C. dactylon(15.4 k Pa) at0–5 cm depth soil layer. The root cohesion values estimated for all species were generally distributed at the 0–10 cm depth and decreased with the increment of soil depth. The higher root cohesion associated with H. altissima and H. compressa implies their suitability for revegetation purposes to strengthen the shallow soil in the riparian zone of the Three Gorges Reservoir. Although the soil reinforcement induced by roots is only assessed from indirect indicators, the present results still useful for species selection in the framework of implementing and future vegetation recovery actions in the riparian zone of the Three Gorges Reservoir and similar areas in the Yangtze River Basin. 展开更多
关键词 Bank stabilization Root area ratio Root tensile strength Soil reinforcement Riparian zone Three Gorges Reservoir
下载PDF
Numerical modeling for the coupled thermo-mechanical processes and spalling phenomena in sp Pillar Stability Experiment (APSE) 被引量:11
8
作者 T.Koyama M.Chijimatsu +4 位作者 H.Shimizu S.Nakama T.Fujita A.Kobayashi Y.Ohnishi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第1期58-72,共15页
In this paper, the coupled thermo-mechanical (TM) processes in the AEspoe Pillar Stability Experiment (APSE) carried out by the Swedish Nuclear Fuel and Waste Management Company (SKB) were simulated using both c... In this paper, the coupled thermo-mechanical (TM) processes in the AEspoe Pillar Stability Experiment (APSE) carried out by the Swedish Nuclear Fuel and Waste Management Company (SKB) were simulated using both continuum and discontinuum based numerical methods. Two-dimensional (2D) and three- dimensional (3D) finite element method (FEM) and 2D distinct element method (DEM) with particles were used. The main objective for the large scale in situ experiment is to investigate the yielding strength of crystalline rock and the formation of the excavation disturbed/damaged zone (EDZ) during excavation of two boreholes, pressurizing of one of the boreholes and heating. For the DEM simulations, the heat flow algorithm was newly introduced into the original code. The calculated stress, displacement and temperature distributions were compared with the ones obtained from in situ measurements and FEM simulations. A parametric study for initial microcracks was also performed to reproduce the spalling phenomena observed in the APSE. 展开更多
关键词 Coupled thermo-mechanical (TM)processesAspoe Pillar stability Experiment (APSE)Excavation disturbed/damaged zone (EDZ)Finite element method (FEM)Distinct element method (DEM)
下载PDF
Spatial distribution and inventory of natural gas hydrate in the Qiongdongnan Basin,northern South China Sea 被引量:1
9
作者 Zhongxian ZHAO Ning QIU +4 位作者 Zhen SUN Wen YAN Genyuan LONG Pengchun LI Haiteng ZHUO 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期729-739,共11页
Natural gas hydrate is a potential clean energy source and is related to submarine geohazard,climate change,and global carbon cycle.Multidisciplinary investigations have revealed the occurrence of hydrate in the Qiong... Natural gas hydrate is a potential clean energy source and is related to submarine geohazard,climate change,and global carbon cycle.Multidisciplinary investigations have revealed the occurrence of hydrate in the Qiongdongnan Basin,northern South China Sea.However,the spatial distribution,controlling factors,and favorable areas are not well defined.Here we use the available high-resolution seismic lines,well logging,and heat flow data to explore the issues by calculating the thickness of gas hydrate stability zone(GHSZ)and estimating the inventory.Results show that the GHSZ thickness ranges between mostly~200 and 400 m at water depths>500 m.The gas hydrate inventory is~6.5×109-t carbon over an area of~6×104 km2.Three areas including the lower uplift to the south of the Lingshui sub-basin,the Songnan and Baodao sub-basins,and the Changchang sub-basin have a thick GHSZ of~250-310 m,250-330 m,and 350-400 m,respectively,where water depths are~1000-1600 m,1000-2000 m,and2400-3000 m,respectively.In these deep waters,bottom water temperatures vary slightly from~4 to 2℃.However,heat flow increases significantly with water depth and reaches the highest value of~80-100 mW/m2 in the deepest water area of Changchang sub-basin.High heat flow tends to reduce GHSZ thickness,but the thickest GHSZ still occurs in the Changchang sub-basin,highlighting the role of water depth in controlling GHSZ.The lower uplift to the south of the Lingshui sub-basin has high deposition rate(~270-830 m/Ma in 1.8-0 Ma);the thick Cenozoic sediment,rich biogenic and thermogenic gas supplies,and excellent transport systems(faults,diapirs,and gas chimneys)enables it a promising area of hydrate accumulation,from which hydrate-related bottom simulating reflectors,gas chimneys,and active cold seeps were widely revealed. 展开更多
关键词 gas hydrate stability zone gas hydrate inventory Qiongdongnan Basin South China Sea
下载PDF
Acidolysis hydrocarbon characteristics and significance of sediment samples from the ODP drilling legs of gas hydrate 被引量:1
10
作者 Xun Sun Chunyan Sun +3 位作者 Jiangyun Xiang Jihui Jia Panfeng Li Zhibin Zhang 《Geoscience Frontiers》 SCIE CAS 2012年第4期515-521,共7页
To study on the significance and basis of acidolysis index to China marine gas hydrate exploring, since 2006, 111 samples derived from Leg 164 and 204 of the Ocean Drilling Program (ODP) were analyzed in the experim... To study on the significance and basis of acidolysis index to China marine gas hydrate exploring, since 2006, 111 samples derived from Leg 164 and 204 of the Ocean Drilling Program (ODP) were analyzed in the experiment center of China Petroleum Exploration Research Institute to obtain data on acidolysis hydrocarbon index and methane carbon isotopes by the gas chromatography (GC) of PE AutoSystem XL and isotope mass spectrometer (IRMS) of Finnigan MAT25 I. Through these, we study the reliability of the acidolysis method and characterize the gas hydrate potential. The results show that the acidolysis hydrocarbon index has a stable correspondence with the Gas Hydrate Stability Zone (GHSZ) in the ODE and that there are clear abnormal signs in shallow samples that might reliably reflect the existence of authigenic carbonate caused by hydrocarbon migration from bottom hydrate. We therefore propose that the ability to characterize the acidolysis hydrocarbon is crucial to submarine gas hydrate exploration in China. 展开更多
关键词 Ocean Drilling Program (ODP) Gas Hydrate stability zone (OHSZ) Acidolysis hydrocarbon index Acidolysis hydrocarbon methane carbon isotopes Geochemical characteristics
下载PDF
Comment on "Estimation of potential distribution of gas hydrate in the northern South China Sea" by Chunjuan Wang et al.
11
作者 张毅 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2011年第5期1128-1130,共3页
Herein we would like to comment on the paper "Estimation of potential distribution of gas hydrate in the northern South China Sea" by Wang et al. 2010 in Chinese Journal of Oceanology and Lirnnology, 28(3): 693-6... Herein we would like to comment on the paper "Estimation of potential distribution of gas hydrate in the northern South China Sea" by Wang et al. 2010 in Chinese Journal of Oceanology and Lirnnology, 28(3): 693-699. The purpose of this comment is to point out that the given probabilities of gas hydrate occtwrence in the northern Zhujiang Mouth Basin and the Yinggehai Basin in the figure of Wang et al. (2010) are improper. After introducing our work of estimation of gas hydrate stability distribution in the northern South China Sea, we suggest that Wang et al. (2010) dismissed the basic P-T rule for the existence of gas hydrate. They should consider more the variables of water depth, seabed temperature and geothermal gradient in their gas hydrate distribution model in future studies. 展开更多
关键词 gas hydrate northern South China Sea gas hydrate stability zone Bottom Simulating Reflector(BSR)
下载PDF
A dynamic two-zone model of continuous fluidized bed layering granulation with internal product classification 被引量:1
12
作者 C. Neugebauer S. Palis +3 位作者 A. Buck E. Tsotsas S. Heinrich A. Kienle 《Particuology》 SCIE EI CAS CSCD 2017年第2期8-14,共7页
A dynamic two-zone model is proposed to address the formation of granulation and drying zones in fluidized bed layering granulation processes with internal product classification. The model assumes a constant volume f... A dynamic two-zone model is proposed to address the formation of granulation and drying zones in fluidized bed layering granulation processes with internal product classification. The model assumes a constant volume for the granulation zone, but a variable overall volume for the fluidized bed to account for classified product removal. The model is used to study the effect of various process parameters on dynamics and process stability. Stability is shown to depend on the separation diameter of product removal and the flow rate of the injected liquid. A lower and upper range of separation diameters with stable process behavior are found. In an intermediate range instability in the form of self-sustained oscillations is observed. The lower stability boundary is in qualitative agreement with recent experimental observations (Schmidt, Bück, & Tsotsas, 2015); the upper boundary was reported in a theoretical paper by Vreman, Van Lare, and Hounslow (2009) based on a single zone model. 展开更多
关键词 Layering granulation zone formation Internal product classification Population balance modeling stability analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部